Skip to main content
Log in

Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells

Implications for the pathogenesis of Parkinson’s disease

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mutations in familial Parkinson’s disease (PD) have been associated with the failure of protein degradation through the ubiquitin-proteasome system (UPS). Impairment of proteasome function has also been suggested to play a role in the pathogenesis of sporadic PD. We examined the proteasome activity in PC12 cells treated with 6-hydroxydopamine (6-OHDA), the dopamine synthetic derivate used in models of PD. We found that 6-OHDA treatment increased protein oxidation, as indicated by carbonyl group accumulation, and increased caspase-3 activity. In addition, there was an increase in trypsin-, chymotrypsin-, and postacidic-like proteasome activities in cells treated with 10–100 µM 6-OHDA, whereas higher doses caused a marked decline. 6-OHDA exposure also increased mRNA expression of the 19S regulatory subunit in a dose-dependent manner, whereas the expression of 20S- and 11S-subunit mRNAs did not change. Administration of the antioxidant N-acetylcysteine to 6-OHDA-treated cells prevented the alteration in proteasome functions. Moreover, reduction in cell viability owing to administration of proteasome inhibitor MG132 or lactacystin was partially prevented by the endogenous antioxidant-reduced glutathione. In conclusion, our data indicate that mild oxidative stress elevates proteasome activity in response to increase in protein damage. Severe oxidative insult might cause UPS failure, which leads to protein aggregation and cell death. Moreover, in the case of UPS inhibition or failure, the blockade of physiological reactive oxygen species production during normal aerobic metabolism is enough to ameliorate cell viability. Control of protein clearance by potent, brain-penetrating antioxidants might act to slow down the progression of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam Z. I., Daniel S. E., Lees A. J., Marsden D. C., Jenner P., and Halliwell B. (1997a) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem. 69, 1326–1329.

    Article  PubMed  CAS  Google Scholar 

  • Alam Z. I., Jenner A., Daniel S. E., Lees A. J., Cairns N., Marsden C. D., et al. (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  • Alves-Rodrigues A., Gregori L., and Figueiredo-Pereira M. E. (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21, 516–520.

    Article  PubMed  CAS  Google Scholar 

  • Andrew R., Watson D. G., Best S. A., Midgley J. M., Wenlong H., and Petty R. K. (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem. Res. 18, 1175–1177.

    Article  PubMed  CAS  Google Scholar 

  • Barzilai A., Zilkha-Falb R., Daily D., Stern N., Offen D., Ziv I., et al. (2000) The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity. J. Neural Transm. Suppl. 60, 59–76.

    PubMed  Google Scholar 

  • Beal M. F. (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 6, 3338–3344.

    PubMed  CAS  Google Scholar 

  • Bence N. F., Sampat R. M., and Kopito R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M. C., Bishop J. F., Leng Y., Chock P. B., Chase T. N., and Mouradian M. M. (1999) Degradation of alpha-synuclein by proteasome. J. Biol. Chem. 274, 33,855–33,858.

    CAS  Google Scholar 

  • Borenfreund J. A. and Puerner A. (1984) A simple quantitative procedure using monolayer culture for cytotoxicity assay. J. Tissue Culture Methods 9, 7–9.

    Article  Google Scholar 

  • Bulteau A. L., Petropoulos I., and Friguet B. (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp. Gerontol. 35, 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A., Harper J. D., and Lansbury P. T. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.

    Article  PubMed  CAS  Google Scholar 

  • Coux O., Tanaka K., and Goldberg A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Davies K. J. (1987) Protein damage and degradation by oxygen radicals: I. General aspects. J. Biol. Chem. 262, 9895–9901.

    PubMed  CAS  Google Scholar 

  • Davies K. J. A. (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie. 83, 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Dexter D. T., Holley A. E., Flitter W. D., Slater T. F., Wells F. R., Daniel S. E., et al. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov. Disord. 9, 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Dexter D. T., Wells F. R., Agid F., Agid Y., Lees A. J., Jenner P., and Marsden C. D. (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2, 1219–1220.

    Article  PubMed  CAS  Google Scholar 

  • Ding Q. and Keller J. N. (2001) Proteasomes and proteasome inhibition in the central nervous system. Free Radic. Biol. Med. 31, 574–584.

    Article  PubMed  CAS  Google Scholar 

  • Elkon H., Melamed E., and Offen D. (2001) 6-Hydroxy-dopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson’s disease. Cell. Mol. Neurobiol. 21, 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira M. E. and Cohen G. (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol. Biol. Rep. 26, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Floor E. and Wetzel M. G. (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem. 70, 268–275.

    Article  PubMed  CAS  Google Scholar 

  • Forno L. S. (1996) Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272.

    PubMed  CAS  Google Scholar 

  • Friguet B. and Szweda L. I. (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 405, 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.

    Article  PubMed  CAS  Google Scholar 

  • Gibb W. R. and Lees A. J. (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Rosenbaum Z., Melamed E., and Offen D. (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54, 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Glickman M. H. and Ciechanover A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428.

    PubMed  CAS  Google Scholar 

  • Glockzin, S. von Knethen A., Scheffner M., and Brune B. (1999) Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J. Biol. Chem. 274, 19,581–19,586.

    Article  CAS  Google Scholar 

  • Goedert M. (2001) Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Graham D. G. (1978) Oxidative pathways for catecholamine in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Grune, T., Blasig I. E., Sitte N., Roloff B., Haseloff R., and Davies K. J. (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Biol. Chem. 273, 10,857–10,862.

    Article  CAS  Google Scholar 

  • Halliwell B. and Jenner P. (1998) Impaired clearance of oxidised proteins in neurodegenerative diseases. Lancet 351, 1510.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa E., Takeshige K., Oishi T., Murai Y., and Minakami S. (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170, 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T. and Goto S. (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech. Ageing Dev. 102, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K., Linert L., Kienzl E., Herlinger E., and Youdim M. B. (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J. Neural Transm. Suppl. 46, 297–314.

    PubMed  CAS  Google Scholar 

  • Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72-S84.

    PubMed  CAS  Google Scholar 

  • Keller J. N., Hanni K. B., and Markesbery W. R. (2000a) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech. Ageing Dev. 113, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Huang F. F., Dimayuga E. R., and Maragos W. F. (2000b) Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic. Biol. Med. 29, 1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Huang F. F., and Markesbery W. R. (2000c) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezey E., et al. (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395, 451, 452.

    Article  PubMed  CAS  Google Scholar 

  • Lewy F. H. (1912) Paralysis agitans. In: Pathologische Anatomie, Lewandowsky, M., ed., Springer, Berlin, pp. 920–933.

    Google Scholar 

  • Lowe J., McDermott H., Landon M., Mayer R. J., and Wilkinson K. D. (1990) Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. 161, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett. 297, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Belizaire R., Isacson O., Jenner P., and Olanow C. W. (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp. Neurol. 179, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Belizaire R., Jenner P., Olanow C. W., and Isacson O. (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci. Lett. 326, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Olanow C. W., Halliwell B., Isacson O., and Jenner P. (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat. Rev. Neurosci. 2, 589–594.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y., Ikebe S., Hattori N., Nakagawa-Hattori Y., Mochizuki H., Tanaka M., and Ozawa T. (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim. Biophys. Acta 1271, 265–274.

    PubMed  Google Scholar 

  • Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Narhi L., Wood S. J., Steavenson S., Jiang Y., Wu G. M., Anafi D., et al. (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Gorodin S., Melamed E., Hanania J., and Malik Z. (1999) Dopamine-melanin is actively phagocytized by PC12 cells and cerebellar granular cells: possible implications for the etiology of Parkinson’s disease. Neurosci. Lett. 260, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Ziv I., Barzilai A., Gorodin S., Glater E., Hochman A., and Melamed E. (1997) Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson’s disease. Neurochem. Int. 31, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Ziv I., Sternin H., Melamed E., and Hochman A. (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp. Neurol. 141, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson J. (1817) An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London.

    Google Scholar 

  • Perry T. L., Godin D. V., and Hansen S. (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Reinheckel T., Sitte N., Ullrich O., Kuckelkorn U., Davies K. J., and Grune T. (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 335, 637–642.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, a Laboratory Mannual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., and Marsden C. D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54, 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Schlossmacher M. G., Hattori N., Frosch M. P., Trockenbacher A., Schneider R., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R., Grune T., Sitte N., and Davies K. J. (2000) 4-Hydroxynonenal-modified amyloid-beta peptide inhibits the proteasome: possible importance in Alzheimer’s disease. Cell. Mol. Life Sci. 57, 1802–1809.

    Article  PubMed  CAS  Google Scholar 

  • Sian J., Dexter D. T., Lees A. J., Daniel S., Jenner P., and Marsden C. D. (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann. Neurol. 36, 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Simantov R., Blinder E., Ratovitski T., Tauber M., Gabbay M., and Porat S. (1996) Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter. Neuroscience 74, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E., Lange K. W., Jellinger K., and Riederer P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett. 142, 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M., and Goedert M. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Stefanis L., Larsen K. E., Rideout H. J., Sulzer D., and Greene L. A. (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560.

    PubMed  CAS  Google Scholar 

  • Strack P. R., Waxman L., and Fagan J. M. (1996) Activation of the multicatalytic endopeptidase by oxidants. Effects on enzyme structure. Biochemistry 35, 7142–7149.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow R. H., Parks J. K., Miller S. W., Tuttle J. B., Trimmer P. A., Sheehan J. P., et al. (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40, 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E. R., and Mizuno Y. (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 93, 2696–2701.

    Article  PubMed  CAS  Google Scholar 

  • Youdim M. B., Ben-Shachar D., and Riederer P. (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol. Scand. Suppl. 126, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Ziv I., Melamed E., Nardi N., Luria D., Achiron A., Offen D., and Barzilai A. (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons, a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci. Lett. 170, 136–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Offen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkon, H., Melamed, E. & Offen, D. Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells. J Mol Neurosci 24, 387–400 (2004). https://doi.org/10.1385/JMN:24:3:387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:3:387

Index entries

Navigation