Skip to main content
Log in

The possible role of tissue-type plasminogen activator (tPA) and tPA blockers in the pathogenesis and treatment of Alzheimer’s disease

  • Alzheimer’s Therapeutics: Anti-Amyloid
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the leading cause of cognitive decline in aged individuals. The pathological hallmarks of AD include the formation of neurofibrillary tangles, along with senile plaques that are mainly composed of the amyloid-β (Aβ) peptide. Several lines of evidence implicate the tPA/plasmin system in AD. One type of cell death observed in AD is excitotoxic neuronal damage, and the tPA/plasmin system participates in excitotoxic cell death. Recent in vitro experiments report that the addition of aggregated Aβ peptide to primary cortical neurons leads to the up-regulation of tPA mRNA expression. Additionally, plasmin (activated by tPA) attenuates Aβ neurotoxicity by degrading the peptide and rendering it inactive. However, there is no evidence to demonstrate an in vivo contribution of the tPA/plasmin system in AD. We are currently examining the effects of the tPA/plasmin system on the deposition and toxicity of the Aβ peptide with in vivo paradigms of AD. We hope to define the contribution of the tPA/plasmin system in the development of AD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen Z.-L. and Strickland S. (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., et al. (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360, 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Pereztur J., et al. (1996) Increased amyloid-β 42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  Google Scholar 

  • Eckman E. A., Reed D. K., and Eckman C. B. (2001) Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J. Biol. Chem. 276, 24,540–24,548.

    Article  CAS  Google Scholar 

  • Franklin K. B. J. and Paxinos G. (1997) The Mouse Brain in Stereotaxic Coordinates. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Frautschy S. A., Horn D. L., Sigel J. J., Harris-White M. E., Mendoza J. J., Yang F., et al. (1998) Protease inhibitor coinfusion with amyloid beta-protein results in enhanced deposition and toxicity in rat brain. J. Neurosci. 18, 8311–8321.

    PubMed  CAS  Google Scholar 

  • Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., et al. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Iwata N., Tsubuki S., Takaki Y., Shirotani K., Lu B., Gerard N. P., et al. Metabolic regulation of brain Aβ by neprilysin. Science 292, 1550–1552.

  • Kingston I. B., Castro M. J., and Anderson S. (1995) In vitro stimulation of tissue-type plasminogen activator by Alzheimer Amyloid beta-peptide analogues. Nat. Med. 1, 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Sappino A.-P., Madani R., Huarte J., Belin D., Kiss J. Z., Wohlwend A., and Vassali J.-D. (1993) Extracellular Proteolysis in the adult murine brain. J. Clin. Invest. 92, 679–685.

    PubMed  CAS  Google Scholar 

  • Schmued L. C. and Hopkins K. J. (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 742–760.

    Google Scholar 

  • Tanzi R. E., Kovacs D. M., Kim T.-W., Moir R. D., Guennette S. Y., and Wasco W. (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3, 159–168.

    Article  Google Scholar 

  • Tsirka S. E., Gualandris A., Amaral D. G., and Strickland S. (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Tsirka S. E., Rogove A. D., and Strickland S. (1996) Neuronal cell death and tPA. Nature 384, 123–124.

    Article  Google Scholar 

  • Tsirka S. E., Rogove A. D., Bugge T. H., Degen J. L., and Strickland S. (1997) An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543–552.

    PubMed  CAS  Google Scholar 

  • Tucker H. M., Kihiko M., Caldwell J. N., Wright S., Kawarabayashi T., Price D., et al. (2000a) The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20, 3937–3946.

    PubMed  CAS  Google Scholar 

  • Tucker H. M., Kihiko-Ehmann M., Wright S., Rydel R. E., and Estus S. (2000b) Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J. Neurochem. 75, 2172–2177.

    Article  PubMed  CAS  Google Scholar 

  • Vassalli J.-D., Sappino A.-P., and Belin D. (1991) The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Vekrellis K., Ye Z., Qiu W. Q., Walsh D., Hartley D., Chesneau V., et al. (2000) Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20, 1657–1665.

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T., Masliah E., Mallory M., McConlogue L., Johnson-Wood K., Lin C., and Mucke L. (1997) Amyloidogenic role of the cytokine TGF-β1 in transgenic mice and Alzheimer’s disease. Nature 389, 603–606.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Strickland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchor, J.P., Pawlak, R., Chen, Z. et al. The possible role of tissue-type plasminogen activator (tPA) and tPA blockers in the pathogenesis and treatment of Alzheimer’s disease. J Mol Neurosci 20, 287–289 (2003). https://doi.org/10.1385/JMN:20:3:287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:20:3:287

Index Entries

Navigation