Skip to main content

Advertisement

Log in

Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer’s disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear.

Objective

In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice.

Methods

We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age.

Results

In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age.

Conclusion

Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhter H, Huang WT, van Groen T et al (2018) A Small molecule inhibitor of plasminogen activator inhibitor-1 reduces brain amyloid-beta load and improves memory in an animal model of Alzheimer’s disease. J Alzheimers Dis 64(2):447–457

    Article  CAS  PubMed  Google Scholar 

  • Barker R, Kehoe PG, Love S (2012) Activators and inhibitors of the plasminogen system in Alzheimer’s disease. J Cell Mol Med 16(4):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi OS, Suh N, Kim I et al (2015) Impacts of aging and amyloid-beta deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer’s disease. Brain Res 1597:159–167

    Article  Google Scholar 

  • Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508

    Article  PubMed  Google Scholar 

  • Busche MA, Hyman BT (2020) Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Cline EN, Das A, Bicca MA et al (2019) A novel crosslinking protocol stabilizes amyloid beta oligomers capable of inducing Alzheimer’s-associated pathologies. J Neurochem 148(6):822–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Merino P, Guo JD et al (2020) Urokinase-type plasminogen activator protects cerebral cortical neurons from soluble abeta-induced synaptic damage. J Neurosci 40(21):4251–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren M, Boe AE, Klyachko EA et al (2014) Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb Hemost 40(6):645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren M, Place AT, Thomas PM et al (2017) PAI-1 is a critical regulator of FGF23 homeostasis. Sci Adv 3(9):e1603259

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabbro S, Seeds NW (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J Neurochem 109(2):303–315

    Article  CAS  PubMed  Google Scholar 

  • Fekih-Mrissa N, Mansour M, Sayeh A et al (2017) The plasminogen activator inhibitor 1 4G/5G Polymorphism and the risk of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 32(6):342–346

    Article  PubMed  Google Scholar 

  • Gerenu G, Martisova E, Ferrero H et al (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochim Biophys Acta Mol Basis Dis 4:991–1001

    Article  Google Scholar 

  • Grabher BJ (2018) Effects of Alzheimer disease on patients and their family. J Nucl Med Technol 46(4):335–340

    Article  PubMed  Google Scholar 

  • Hardigan T, Ward R, Ergul A (2016) Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci (Lond) 130(20):1807–1822

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx JO, De Moudt S, Calus E et al (2022) Age-related cognitive decline in spatial learning and memory of C57BL/6J mice. Behav Brain Res 418:113649

    Article  PubMed  Google Scholar 

  • Huang LK, Chao SP, Hu CJ (2020) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen JS, Comery TA, Martone RL et al (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci U S A 105(25):8754–8759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CS, Rana T, Jin LW et al (2023) Aging, plasminogen activator inhibitor 1, brain cell senescence, and Alzheimer’s disease. Aging Dis 14(2):515–528

    PubMed  PubMed Central  Google Scholar 

  • Kupershmidt L, Youdim MBH (2023) The Neuroprotective activities of the novel multi-target iron-chelators in models of Alzheimer’s disease, amyotrophic lateral sclerosis and aging. Cells 12(5):763

  • Kutz SM, Higgins CE, Higgins PJ (2012) Novel combinatorial therapeutic targeting of PAI-1 (SERPINE1) gene expression in Alzheimer’s disease. Mol Med Ther 1(2):106

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert MP, Velasco PT, Chang L et al (2007) Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 100(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Eren M, Vaughan DE et al (2012) A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma. Am J Respir Cell Mol Biol 46(6):842–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TW, Tsang VW, Loef EJ et al (2017) Physiological and pathological functions of neuroserpin: Regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol 62:152–159

    Article  CAS  PubMed  Google Scholar 

  • Leger M, Quiedeville A, Bouet V et al (2013) Object recognition test in mice. Nat Protoc 8(12):2531–2537

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang H, Yang L et al (2023) Inhibition of NLRP1 inflammasome improves autophagy dysfunction and Abeta disposition in APP/PS1 mice. Behav Brain Funct 19(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RM (2022) Aging, cellular senescence, and Alzheimer’s disease. Int J Mol Sci 23(4). https://doi.org/10.3390/ijms23041989

  • Liu RM, van Groen T, Katre A et al (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32(6):1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Locci A, Orellana H, Rodriguez G et al (2021) Comparison of memory, affective behavior, and neuropathology in APP(NLGF) knock-in mice to 5xFAD and APP/PS1 mice. Behav Brain Res 404:113192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Nagappan G, Guan X et al (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416

    Article  CAS  PubMed  Google Scholar 

  • Lueptow LM (2017) Novel Object recognition test for the investigation of learning and memory in mice. J Vis Exp Epub ahead of print 20170830:–126. https://doi.org/10.3791/55718

  • Mantile F, Prisco A (2020) Vaccination against beta-amyloid as a strategy for the prevention of Alzheimer’s disease. Biology (Basel) 9(12):425

  • McClarty B, Rodriguez G, Dong H (2021) Dose effects of histone deacetylase inhibitor tacedinaline (CI-994) on antipsychotic haloperidol-induced motor and memory side effects in aged mice. Front Neurosci 15:674745

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration. J Neurosci 23(26):8867–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montalvo-Ortiz JL, Fisher DW, Rodriguez G et al (2017) Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice. Psychopharmacology (Berl) 234(16):2385–2398

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Koyama N, Yokoo T et al (2020) Gallic acid is a dual alpha/beta-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J Biol Chem 295(48):16251–16266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou X, Peterson CB, Prosser RA (2009) Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitro. Eur J Neurosci 30(8):1451–1460

    Article  PubMed  Google Scholar 

  • NIA (2023) Alzheimer’s Disease Fact Sheet. Available at: https://www.nia.nih.gov/health/alzheimers-disease-factsheet#:~:text=Alzheimer%E2%80%99s%20is%20currently%20ranked%20asof%20dementia%20among%20older%20adults.

    Google Scholar 

  • O’Leary TP, Brown RE (2013) Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze. Learn Mem 20(2):85–96

    Article  PubMed  Google Scholar 

  • Oh J, Lee HJ, Song JH et al (2014a) Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol 60:87–91

    Article  CAS  PubMed  Google Scholar 

  • Oh SB, Byun CJ, Yun JH et al (2014b) Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging 35(3):511–519

    Article  CAS  PubMed  Google Scholar 

  • Park L, Zhou J, Koizumi K et al (2020) tPA deficiency underlies neurovascular coupling dysfunction by amyloid-beta. J Neurosci 40(42):8160–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentz R, Iulita MF, Ducatenzeiler A et al (2021) The human brain NGF metabolic pathway is impaired in the preclinical and clinical continuum of Alzheimers disease. Mol Psychiatry 26(10):6023–6037

    Article  CAS  PubMed  Google Scholar 

  • Reutzel M, Grewal R, Dilberger B et al (2020) Cerebral Mitochondrial function and cognitive performance during aging: a longitudinal study in NMRI Mice. Oxid Med Cell Longev 2020:4060769

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7(Suppl 1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Sillen M, Declerck PJ (2021) A narrative review on plasminogen activator inhibitor-1 and its (patho)physiological role: to target or not to target? Int J Mol Sci 22(5):2721

  • Simon DI, Simon NM (2013) Plasminogen activator inhibitor-1: a novel therapeutic target for hypertension? Circulation 128(21):2286–2288

    Article  PubMed  PubMed Central  Google Scholar 

  • Suidan GL, Singh PK, Patel-Hett S et al (2018) Abnormal clotting of the intrinsic/contact pathway in Alzheimer disease patients is related to cognitive ability. Blood Adv 2(9):954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Ghosh AK, Eren M et al (2019) PAI-1 contributes to homocysteine-induced cellular senescence. Cell Signal 64:109394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton R, Keohane ME, VanderBerg SR et al (1994) Plasminogen activator inhibitor-1 in the cerebrospinal fluid as an index of neurological disease. Blood Coagul Fibrinolysis 5(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Szabo A, Farkas S, Fazekas C et al (2023) Temporal appearance of enhanced innate anxiety in Alzheimer model mice. Biomedicines. 2:262. https://doi.org/10.3390/biomedicines11020262

  • Tang MY, Gorin FA, Lein PJ (2022) Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer’s disease. Ageing Neurodegener Dis 2:2

  • Tucker HM, Kihiko M, Caldwell JN et al (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J Neurosci 20(11):3937–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan DE, Rai R, Khan SS et al (2017) Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arterioscler Thromb Vasc Biol 37(8):1446–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viana TG, Almeida-Santos AF, Aguiar DC et al (2013) Effects of aripiprazole, an atypical antipsychotic, on the motor alterations induced by acute ethanol administration in mice. Basic Clin Pharmacol Toxicol 112(5):319–324

    Article  CAS  PubMed  Google Scholar 

  • Wang DS (2006) Dickson DW and Malter JS (2006) beta-Amyloid degradation and Alzheimer’s disease. J Biomed Biotechnol 3:58406

    Google Scholar 

  • Wang J, Yuan Y, Cai R et al (2018) Association between plasma levels of PAI-1, tPA/PAI-1 molar ratio, and mild cognitive impairment in chinese patients with type 2 diabetes mellitus. J Alzheimers Dis 63(2):835–845

    Article  CAS  PubMed  Google Scholar 

  • Yarmolinsky J, Bordin Barbieri N, Weinmann T et al (2016) Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies. Sci Rep 6:17714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yepes M (2021) The plasminogen activating system in the pathogenesis of Alzheimer’s disease. Neural Regen Res 16(10):1973–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziliotto N, Bernardi F, Piazza F (2021) Hemostasis components in cerebral amyloid angiopathy and Alzheimer’s disease. Neurol Sci 42(8):3177–3188

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institution of Aging (1R01AG062249, Dong) and the National Heart, Lung, and Blood Institute (R01HL051387, Vaughan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Dong.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

S. Figure 1. TM5A15 intake and body weight in wild-type and APP/PS1 mice. A. The body weight of mice measured before and after 6 months of the vehicle or TM5A15 treatment. Mice showed no significant change in body weight between groups. B. Food intake of vehicle and TM5A15 was measured weekly. Weekly measurements showed no difference in food intake between groups that were treated for 6 months. C. The body weight of mice was measured before and after 9 months of the vehicle or TM5A15 treatment. Mice showed no significant change in body weight between groups. D. Food intake of the vehicle and TM5A15 was measured weekly. Weekly measurements showed no difference in food intake between groups that were treated for 9 months. (PDF 106 kb)

ESM 2

S. Figure 2. PAI-1 activity levels on WT and APP/PS1 after completion of the vehicle and TM5A15 treatment. Data are presented as Mean±SEM, n=14, * p= 0.0361. (PDF 36 kb)

ESM 3

S. Figure 3. Effect of vehicle treatment on PAI-1 signaling and downstream factors in 9 month and 18 month-old WT and APP/PS1 mice. Protein quantification by western blot was conducted, and t-PA, (A: * p= 0.0117, ** p= 0.0090) and PAI-1 (B: * p= 0.0231, WT 9mo vs WT 18mo ** p=0.0013, APP/PS1 9mo vs APP/PS1 18 mo ** p= 0.0042, ***p = 0.0003) in untreated WT and APP/PS1 groups were determined. Data are presented as Mean±SEM, n=5-7. (PDF 86 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, G., Eren, M., Haupfear, I. et al. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology 240, 2641–2655 (2023). https://doi.org/10.1007/s00213-023-06459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06459-8

Keywords

Navigation