Skip to main content
Log in

The proteasome

A central regulator of inflammation and macrophage function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Proteasomes, multisubunit complexes that consist of a 20S proteasome and a 19S regulatory complex, are essential for several cellular processes. Our interest in the proteasome complex stems from our observations that a novel photoactivable lipopolysaccharide (LPS) probe binds to specific proteasome subunits, and that LPS enhances the chymotrypsin-like activity of the proteasome to degrade synthetic peptides in vitro. Experiments with proteasome inhibitors have shown that expression of many LPS-inducible genes, including TLR2, is inhibited in macrophages. More important, proteasome inhibitors such as lactacystin can prevent LPS-induced shock in mice. This article focuses on the role of the proteasome in the development of inflammatory processes, which may result in septic shock, hemorrhagic shock, atherosclerosis, and neurodegenerative disorders. Taken collectively, the results suggest a potentially important role of the proteasome in inflammation and other macrophage functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kisselev AF, Goldberg AL: Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–758.

    Article  PubMed  CAS  Google Scholar 

  2. Wolf DH: Proteasomes: a historical retrospective; in Hilt W, Wolf DH (eds): Proteasomes: The World of Regulatory Proteolysis. Georgetwon, TX, Landes Bioscience, 2000, pp 1–7.

    Google Scholar 

  3. Harris JR: Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 1968;150:534–537.

    Article  PubMed  CAS  Google Scholar 

  4. Harris JR: The isolation and purification of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 1969;188:31–42.

    PubMed  CAS  Google Scholar 

  5. Wilk S, Orlowski M: Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J Neurochem 1980;25:1172–1182.

    Article  Google Scholar 

  6. Orlowski M, Wilk S: A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem Biophys Res Commun 1981;101:814–822.

    Article  PubMed  CAS  Google Scholar 

  7. Forster A, Hill CP: Proteasome degradation: enter the substrate. Trends Cell Biol 2003;13:550–553.

    Article  PubMed  CAS  Google Scholar 

  8. Hartmann-Petersen R, Seeger M, Gordon C: Transferring substrates to the 26S proteasome. Trends Biochem Sci 2003;28:26–31.

    Article  PubMed  CAS  Google Scholar 

  9. Goldberg AL, Elledge SJ, Harper JW: The cellular chamber of doom. Sci Am 2000;68–73.

  10. Rolfe M, Chiu MI, Pagano M: The ubiquitin-mediated proteolytic pathway as a therapeutic area. J Mol Med 1997;75:5–17.

    Article  PubMed  CAS  Google Scholar 

  11. Peters J-M: Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 1994;19:377–382.

    Article  PubMed  CAS  Google Scholar 

  12. Goldberg AL: Probing the proteasome pathway. Nat Biotechnol 2001;18:68–73.

    Google Scholar 

  13. Maupin-Furlow JA, Wilson HL, Kaczowka SJ, Ou MS: Proteasomes in the archaea: from structure to function. Front Bioscience 20005:D837-D865.

    CAS  Google Scholar 

  14. Dahlman B, Hendil KB, Kristensen P, Uerkvitz W Sobek A, Kopp F: Subunit arrangement in the human proteasome: in Hilt W, Wolf DH (eds) Proteasomes: The World of Regulatory Proteolysis, Georgetown, TX, Landes Bioscience, 2000, pp 37–47.

    Google Scholar 

  15. Stoltze L, Nussbaum AK, Sijts A, Emmerich NP, Kloetzel PM, Schild H: The function of the proteasome system in MHC class I antigen processing. Immunol Today 2000;2:317–319.

    Article  Google Scholar 

  16. Hirsch C, Pleogh HL: Intracellular targeting of the proteasome. Trends Cell Biol 2000;10:268–272.

    Article  PubMed  CAS  Google Scholar 

  17. Zwickl P, Goldberg AL, Baumeister W: Proteasomes in prokaryotes; in: Hilt W, Wolf DH, (eds) Proteasomes: The World of Regulatory Proteolysis, Georgetown, TX. Landes Bioscience, 2000, pp 8–20.

    Google Scholar 

  18. Elenich LA, Nandi D, Kent AE, McCuskey TS, Cruz M, Lyer MN, Woodward EC, Conn CW, Ochoa AL, Ginsburg DB, Monaco JJ: The complete primary structure of mouse 20S proteasomes. Immunogenetics 1999;49:835–842.

    Article  PubMed  CAS  Google Scholar 

  19. Rechsteiner M, Realini C, Ustrell V: The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem J 2000;345:1–15.

    Article  PubMed  CAS  Google Scholar 

  20. Groettrup M, Khan S, Schwarz K, Schmidtke G: Interferon-γ inducible exchanges of 20S proteasome active subunits: Why? Biochimie 2001;83:367–372.

    Article  PubMed  CAS  Google Scholar 

  21. Dick LR, Cruikshank AA, Destree AT, Greier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL: Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 1997;272:182–188.

    Article  PubMed  CAS  Google Scholar 

  22. Tiao G, Fagan JM, Samuels N, James JH, Hudson K, Lieberman M, Fischer JE, Hasselgren PO: Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels I rat skeletal muscle. J Clin Invest 1994;94:2255–2264.

    PubMed  CAS  Google Scholar 

  23. Hobler SC, Williams A, Fischer D Wang JJ, Sun X, Fischer JE, Monaco JJ, Hasselgren PO: Activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis. Am J Phys 1999;277:R434-R440.

    CAS  Google Scholar 

  24. Chai J, Wu Y, Sheng JJ: Role of the ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit Care Med 2003;31:1802–1807.

    Article  PubMed  Google Scholar 

  25. Maksymowych WP, Ikawa T, Yamaguchi A, et al: Invasion by Salmonella typhimurium induces increased expression of the LMP, MECL, and PA28 proteasomes and changes in the peptide repertoire of HLA-B27. Infect Immun 1998;66:4624–4632.

    PubMed  CAS  Google Scholar 

  26. Qureshi N, Perera P-Y, Splitter G, Morrison DC, Vogel SN: The proteasome as a LPS-binding protein in macrophages: toxic lipopolysaccharide activates the proteasome complex. J Immunol 2003;171:1515–1525.

    PubMed  CAS  Google Scholar 

  27. Beutler B, Cerami A: Cachectin: more than a tumor necrosis factor. N Engl J Med 1987;316:379–385.

    Article  PubMed  CAS  Google Scholar 

  28. Beutler B, Greenwald JD, Hulmes JD, Chang M, Pan YE, Mathison J, Ulevitch R, Cerami A: Identity of tumor necrosis factor and the macrophage-secreted factor. Nature (Lond) 1985;316:552–554.

    Article  CAS  Google Scholar 

  29. Dinarello CA: Interleukin-1, amino acid sequences, multiple biological activities and comparison with tumor necrosis factor (cachectin). Year Immunol 1986;2:68–89.

    PubMed  CAS  Google Scholar 

  30. Kutuzova G, Albrecht R, Erickson C, Qureshi N: Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of toxic lipopolysaccharide in RAW 264.7 cells. J Immunol 2001;167:482–489.

    PubMed  CAS  Google Scholar 

  31. Kitchens RL, Wang PY, Munford RS: Bacterial lipopolysaccharide can enter monocytes via two CD14 dependent pathways. J Immunol 1993;161:5534–5545.

    Google Scholar 

  32. Schumann RR, Leonh SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ: Structure and function of lipopolysaccharide-binding protein. Science 1990;249:1429–1431.

    Article  PubMed  CAS  Google Scholar 

  33. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharides (LPS) and LPS binding protein. Science 1990;249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  34. Qureshi N, Jarvis B, Takayama K: Rs-DPLA, a potent LPS antagonist; in Brade H, Morrison DC, Opal SM, Vogel S (eds) Endotoxin in Health and Disease. New York, Marcel Dekker, 1999, pp 687–698.

    Google Scholar 

  35. Jarvis B, Lichenstein H, Qureshi N: Diphosphoryl lipid A from Rhodobacter sphaeroides inhibits the complexes that form in vitro between LBP, sCD14 and spectral-pure lipopolysaccharide. Infect Immun 1997;65:3011–3016.

    PubMed  CAS  Google Scholar 

  36. Lei M-G, Gao J-J, Morrison DC, Qureshi N: Pathogenesis of sepsis: current concepts and emerging therapies. Mo Med 2003;100:524–529.

    PubMed  Google Scholar 

  37. Poltorak, A, He X, Smirnova I, et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  38. Lien E, Means TK, Heine H, et al: Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000;105:497–504.

    Article  PubMed  CAS  Google Scholar 

  39. Janeway CA, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2000;20:197–216.

    Article  Google Scholar 

  40. O'Neill LAJ, Fitzgerald KA, Bowie AG: The toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003;24:286–290.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S: A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004;303:1522–1526.

    Article  PubMed  CAS  Google Scholar 

  42. Qureshi ST, Gros P Malo D: Host resistance to infection: genetics of lipopolysaccharide responsiveness by TOLL-like receptor genes. Trends Genet 1999;15:291–294.

    Article  PubMed  CAS  Google Scholar 

  43. Akashi S, Shimizu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K: Cutting edge: cell surface expression and lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 2000;164: 3471–3475.

    PubMed  CAS  Google Scholar 

  44. Silva Correia JD, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. J Biol Chem 2001;276:21,129–21,135.

    Google Scholar 

  45. Visintin A, Latz E, Monks BG, Espevik T, Golenbock DT: Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to toll-like receptor-4 aggregation and signal transduction. J Biol Chem 2003; 278:48,313–48,320.

    Article  CAS  Google Scholar 

  46. Akira S: Mammalian Toll-like receptors. Curr Opin Immunol 2003;15:5–11.

    Article  PubMed  CAS  Google Scholar 

  47. Vogel SN, Fitzgerald KA, Fenton MJ: TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol Intervent 2003;3:466–477.

    Article  CAS  Google Scholar 

  48. Heil F, Hemmi, H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S: Species-specific recognition of single-strended RNA via toll-like receptor 7 and 8. Science 2004;303:1526–1529.

    Article  PubMed  CAS  Google Scholar 

  49. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529–1531.

    Article  PubMed  CAS  Google Scholar 

  50. Hornef MW, Frisan T, Vandewalla A, Normark S, Richter-Dahlfors A: Toll-like receptor 4 resides in the golgi apparatus and colocalizes with the internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 2002;195:559–570.

    Article  PubMed  CAS  Google Scholar 

  51. Yamin TT, Miller DK: The interleukin-1 receptor-associated kinase is degraded, by proteasomes following its phosphorylation. J Biol Chem 1997;272: 21,540–21,547.

    Article  CAS  Google Scholar 

  52. Karin M: The beginning of the end: IκB kinase (IKK) and NF- κB activation. J Biol Chem 1999;274: 27,339–27,342.

    Article  CAS  Google Scholar 

  53. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T: The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and activation and activation of NF-kappa B. Cell 1994;78:773–785.

    Article  PubMed  CAS  Google Scholar 

  54. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003;4:1144–1150.

    Article  PubMed  CAS  Google Scholar 

  55. Weinstein SL, Gold MR, DeFranco AL: Bacterial lipopolysaccharide stimulates tyrosine phosphorylation in macrophages. Proc Natl Acad Sci USA 1991; 88:4148–4152.

    Article  PubMed  CAS  Google Scholar 

  56. Sanghera JS, Weinstein SL, Aluwalia M, Gim J, Pelech SL: Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J Immunol 1996;156:4456–4465.

    Google Scholar 

  57. Nick JA, Avdi NJ Gerwins P, Johnson GL, Worthen GS: Activation of a p38 mitogen-activated protein kinase by lipopolysaccharide. J Immunol 1996;156:4867–4875.

    PubMed  CAS  Google Scholar 

  58. Li L, Cousart S, Hsu J, McCall CE: Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J Biol Chem 2000;275: 23,340–23,345.

    CAS  Google Scholar 

  59. Lehmann V, Freundenberg MA, Galanos C: Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 1987;165:657–663.

    Article  PubMed  CAS  Google Scholar 

  60. Shnyra A, Brewington R, Alipio A, Amura C, Morisson DC: Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol 1998;160: 3729–3736.

    PubMed  CAS  Google Scholar 

  61. Vogel SN: Lipopolysaccharide-induced interferon; in Morrison DC, Ryan J (eds) Bacterial Endotoxic Lipopolysaccharides Immunopharmacology and Pathophysiology. Boca Raton, FL, CRC Press, 1992, pp 165–196.

    Google Scholar 

  62. Groettrup M, Khan S, Schwarz K, Schmidtke G: Interferon-γ inducible exchanges of 20S proteasome active site subunits: Why? Biochemie 2001;83:367–372.

    Article  CAS  Google Scholar 

  63. Lefer AM, Daw JC, Berne RW: Cardiac and skeletal muscle metabolic energy stores in hemorrhagic shock. Am J Physiol 1969;216:483–486.

    PubMed  CAS  Google Scholar 

  64. Chaudry IH, Sayeed MM, Baue AE: Depletion and restoration of tissue ATP in hemorrhagic shock. Arch Surg 1974;108:208–211.

    PubMed  CAS  Google Scholar 

  65. Pass LJ, Schloerb PR, Chow FT, Graham M, Pearce FJ, Frankin MW, Drucker WR: Liver adenosine triphosphate (ATP) in hypoxia and hemorrhagic shock. J Trauma 1982;22:730–735.

    Article  PubMed  CAS  Google Scholar 

  66. Allan G, Cambridge D, Lee-Tsang-Tan I, Van Way CW, Whiting M: The protective action of allopurinol in an experimental model of haemorrhagic shock and reperfusion. Br J Pharmacol 1986;89:149–155.

    PubMed  CAS  Google Scholar 

  67. Van Way CW III, Dhar A, Reddy R, Evans, L, Wogahn B, Helling TS: Changes in adenine nucleotide during hemorrhagic shock and reperfusion. J Surg Res 1996;66:159–166.

    Article  PubMed  Google Scholar 

  68. Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI: Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 2001;276: 30,057–30,063.

    CAS  Google Scholar 

  69. Shah IM, Lees KR, Pien CP, Elliott PJ: Early clinical experience with the novel proteasome inhibitor PS-519. Br J Clin Pharmacol 2002;54:269–276.

    Article  PubMed  CAS  Google Scholar 

  70. Zhu H, Jackson T, Bunn HF: Detecting and responding to hypoxia. Nephrol Dialysis Transplant 2002; 17 (Suppl 1): 3–7.

    Article  Google Scholar 

  71. Chang C, Van Way CW III, Dhar A, Helling T Jr, Hahn, Y.: The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic shock. J Surg Res 2000;92:171–176.

    Article  PubMed  CAS  Google Scholar 

  72. Van Way CW, Dhar A, Morrison DC: Cellular energetics in hemorrhagic shock: restoring adenosine triphosphate to the cells. J Trauma Inj Infect Crit Care 2003;54:S169-S176.

    Google Scholar 

  73. Van Way CW III, Dhar A, Morrison D: Hemorrhagic shock: a new look at an old problem. Mo Med 2003;100:518, 519.

    PubMed  Google Scholar 

  74. Tawadrous ZS, Delude RL, Fink MP: Resuscitation from hemorrhagic shock with ringer's ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock 2002; 17:473–477.

    Article  PubMed  Google Scholar 

  75. Yang R, Gallo DJ, Bauset JJ, Uchiyama T, Watkins SK, Delude RL, Fink MP: Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am J Physiol 2002;283: G212-G221.

    CAS  Google Scholar 

  76. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D: Activated transcription factor-Kappa B is present in the atherosclerotic lesion. J Clin Invest 1996; 1715–1722.

  77. Hampton RY, Gardner RG, Rine J: Role of the 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 1996;7:2029–2044.

    PubMed  CAS  Google Scholar 

  78. Ravid T, Doolman R, Avner R, Harats D, Roitelman J: The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 2000; 275:35,840–35,847.

    Article  CAS  Google Scholar 

  79. Qureshi N, Dugan RE, Nimmanit S, Wu WH, Porter JW: Purification of β-hydroxy-β-methylglutaryl coenzyme A reductase from yeast. Biochemistry 1976; 15:4185–4190.

    Article  PubMed  CAS  Google Scholar 

  80. Qureshi N, Dugan RE, Cleland WW, Porter JW: Kinetic analysis of the individual reductive steps catalyzed by β-hydroxy-β-methyl-glutaryl coenzyme A reductase obtained from yeast. Biochemistry 1976;15: 4191–4197.

    Article  PubMed  CAS  Google Scholar 

  81. Endo A, Tsujita Y, Kuroda M, Tanazawa K: Inhibition of cholesterol synthesis in vivo by ML 236B a competitive inhibitor of 3-hydroxy 3-methyl glutaryl coenzyme A reductase. Eur J Biochem 1977;87: 313–319.

    Google Scholar 

  82. Alberts AW, Chen J, Kuron G: Mevinolin: a highly potent competitive inhibitor of hydroxyl methyl-glutaryl coenzyme A reductase and a cholesterol lowering agent. Proc Natl Acad Sci USA 1980;77: 3957–3961.

    Article  PubMed  CAS  Google Scholar 

  83. Goldstein JL, Brown MS: Regulation of the mevalonate pathway. Nature 1990;343:425–430.

    Article  PubMed  CAS  Google Scholar 

  84. Qureshi N, Qureshi AA: Tocotrienols, novel hypocholesterolemic agents with antioxidant properties; in Packer L, Fucks J (eds) Vitamin E in Health and Disease. New York, Marcel Dekker, 1993, pp 247–268.

    Google Scholar 

  85. Qureshi N, Hofman J, Qureshi AA: Inhibition of LPS induced tumor necrosis factor synthesis and hypocholesterolemic effect of novel tocotrienols; in PORIM International Palm Oil Congress. 1993; September 20–25, N16.

  86. Qureshi AA, Salser WA, Parmar R, Emeson EE: Novel tocotrienols of rice bran inhibit atherosclerotic lesions in C57BL/6 apoE-deficient mice. Am Soc Nutr Sci 2001;131:2606–2618.

    CAS  Google Scholar 

  87. Rao S, Porter DC, Chien X, Herliczek T, Lowe M, Keyomarsi K. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. PNAS 1999;96: 7797–7802.

    Article  PubMed  CAS  Google Scholar 

  88. Murray SS, Tu KN, Young KL, Murray EJ: The effects of lovastatin on proteasome activities in highly purified rabbit 20S proteasome preparations and mouse MC3T3-E1 osteoblastic cells. Metab Clin Exp 2002; 51:1153–1160.

    PubMed  CAS  Google Scholar 

  89. Wojcik C, Bury M, Stoklosa T, Giermasz A, Feleszko W, Mlynarczuk I, Pleban E, Basak G, Omura S, Jakobisiak M: Lovastatin and simvastatin are modulators of the proteasome. Int J Biochem Cell Biol 2000: 32:957–965.

    Article  PubMed  CAS  Google Scholar 

  90. Wagner AH, Kohler T, Ruckscloss U, Just I, Hecker M: Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 2000;20:61–69.

    PubMed  CAS  Google Scholar 

  91. Palinski W: New evidence for beneficial effects of statins unrelated to lipid lowering. Arterioscler Thromb Vasc Biol 2001;21:3–5.

    PubMed  CAS  Google Scholar 

  92. Dictyl W, Dulak J, Frick M, Hannes F, Schwarzacher SP, Ares MPS, Nilsson J, Pachinger O, Weidinger F: HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003;23:58–63.

    Article  CAS  Google Scholar 

  93. Ding Q, Keller JN: Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 2001;31:574–584.

    Article  PubMed  CAS  Google Scholar 

  94. Ingano LA, Lentini KM, Kovacs I, Tanzi RE, Kovacs DM: Cytoplasmic presenilin aggregates in proteasome-inhibitor-treated cells. Ann NY Acad Sci 2000;920: 259, 260.

    Article  PubMed  CAS  Google Scholar 

  95. Choi P, Ostrerova-Golts N, Sparkman D, Cochran E, Lee JM, Wolozin B: Parkin is metabolized by the ubiquitin/proteasome system. Neuroreport 2000;11: 2635–2638.

    Article  PubMed  CAS  Google Scholar 

  96. Ma J, Wollmann R, Lindquist S: Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Trends Neurosci 2003;337–339.

  97. Keller JN, Hanni KB, Markesberry WR: Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Aging Dev 2000;113:61–70.

    Article  PubMed  CAS  Google Scholar 

  98. Gaczynska M, Osmulski PA, Ward WF: Caretaker or undertaker? The role of the proteasome in aging. Mech Ageing Dev 2001;122:235–254.

    Article  PubMed  CAS  Google Scholar 

  99. Ward WF: Food restriction enhancement of the proteolytic capacity of aging rat liver. J Gerontol 1988; 43:B121-B124.

    PubMed  CAS  Google Scholar 

  100. Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE: An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 1999; 274:15,194–15,202.

    CAS  Google Scholar 

  101. Fuchs SY, Tappin I, Ronai Z: Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 2000;275: 12,560–12,564.

    Article  CAS  Google Scholar 

  102. Tintut Y, Parhami F, Le V, Karsenty G, Demer LL: Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells: ubiquitin/proteasome-dependent regulation. J Biol Chem 1999;274:28,875–28,879.

    Article  CAS  Google Scholar 

  103. Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L: Regulation of the hypoxia-inducible transcription factor 1 alpha by the ubiquitin-proteasome pathway. J Biol Chem 1999;274:6519–6525.

    Article  PubMed  CAS  Google Scholar 

  104. Hipp MS, Urbich C, Mayer P, Wischhusen J, Weller M, Kracht M, Spyridopoulos I. Proteasome inhibition leads to NF-kappa B-independent IL-8 transactivation in human endothelial cells through induction of AP-1. Eur J Immunol 2002;32:2208–2217.

    Article  PubMed  CAS  Google Scholar 

  105. Richardson PG, Barlogie B, Berenson J et al: A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609–2617.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, N., Vogel, S.N., Van Way, C. et al. The proteasome. Immunol Res 31, 243–260 (2005). https://doi.org/10.1385/IR:31:3:243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:31:3:243

Key Words

Navigation