Skip to main content
Log in

Immune regulation

Susceptibility and resistance to autoimmunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Susceptibility and resistance to autoimmune diabetes appear to be regulated at several levels. Whereas the effector functions of autoimmunity are dependent on the antigen-specific responses of autoreactive T cells, the development of tissue-specific autoimmunity appears to be additionally dependent on tissue-specific factors. Thus, the recruitment of T lymphocytes into the vicinity of islet tissue is driven by the local production of chemokines with a pattern unique to islet tissue. The accumulation of lymphocytes triggers events that lead to the local development of new lymphoid tissue, enhancing the presentation of islet-specific antigens to the immune system. In the presence of additional genetic factors allowing persistent immune responses, autoreactivity is permitted to progress until end-stage autoimmune diabetes develops. My laboratory is studying the influence of tissue-specific factors and the genetic regulation of lymphocyte reactivity. An integrated understanding of these effects should lead to a more physiologic approach to prevention and treatment of autoimmune diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo D, Sprent J: Identity of cells that imprint H-2-restricted T-cell specificity in the thymus. Nature 1986;319:672–675.

    Article  PubMed  CAS  Google Scholar 

  2. Ron Y, Lo D, Sprent J: T cell specificity in tw ice-irradiated F1→parent bone marrow chimeras: fai lure to detect a role for immigrant marrow-derived cells in imprinting intrathymic H-2 restriction. J Immunol 1986;137:1764–1771.

    PubMed  CAS  Google Scholar 

  3. Poirier G, Lo D, Reilly CR, Kaye J: Discrimination between thymic epithelial cells and peripheral antigen presenting cells in the induction of immature T cell differentiation. Immunity 1994;1: 385–391.

    Article  PubMed  CAS  Google Scholar 

  4. Laufer TM, DeKoning J, Markowitz JS Lo D, Glimeher LH: Unopposed positive selection and autoreactivity in mice expressing class 11 MHC only on thymic cortex. Nature 1996;382:81–85.

    Article  Google Scholar 

  5. DeKoning J, DiMolfetto L, Reilly C, Wei Q, Havran W, Lo D: Thymic corticalepithelium is sufficient for the development of mature T cells in RelB-deficient mice. J Immunol 1997;158:2558–2566.

    PubMed  CAS  Google Scholar 

  6. Lo D, Ron Y, Sprent J: Induction of MHC-restricted specificity and tolerance in the thymus. Immunol Res 1986;5:221–232.

    Article  PubMed  CAS  Google Scholar 

  7. Marrack P, Lo D, Brinster R, Palmiter R, Burkly L, FlavellR, Kappler J: The effect of thymus environment on T cell development and tolerance. Cell 1988;53: 627–634.

    Article  PubMed  CAS  Google Scholar 

  8. Burkly LC, Degermann S, Longley J, Hagman J, Brinster RL, Lo D, Flavell RA: Clonal deletion of Vß5+T cells by transgenic 1-E restricted to thymic medullary epithelium. J Immunol 1993;151: 3954–3960.

    PubMed  CAS  Google Scholar 

  9. Degermann S, Surh CD, Glimcher, LH, Sprent J, Lo D: B7 expression on thymic medulary epithelium correlates with epithelium mediated deletion of Vß5+thymocytes. J Immunol 1994;152:3254–3263.

    PubMed  CAS  Google Scholar 

  10. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D: Expression of RelB is required for the development of thymic medulla and dendritic cells. Nature 1995; 373:531–536.

    Article  PubMed  CAS  Google Scholar 

  11. Naspetti M, Aurrand-Lions M, DeKoning J, Malissen M, Galland F, Lo D, Naquet P: Thymocytes and RelB-dependent medullary epithelial cells provide respectively growth-promoting and organization signals to thymic medullary stromal cells. Eur J Immunol 1997;27:1392–1397.

    Article  PubMed  CAS  Google Scholar 

  12. Lo D, Reilly C, Burkly L, DeKoning J, Laufer T, Glimcher L: Thymic stromal cell specialization and the T cell receptor repertoire. Immunol Res 1997;16:3–14.

    PubMed  CAS  Google Scholar 

  13. Lo D, Reilly CR, Scott B, Liblau R, McDevit HO, Burkly LC: Antigen presenting cells in adoptively transferred and spontaneous diabetes. Eur J Immunol 1993;23: 1693–1698.

    Article  PubMed  CAS  Google Scholar 

  14. Scott B, Liblau R, Degermann S, Marconi LA, Ogata J, Caton AJ, McDevitt HO, Lo D: A role fornon-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1994;1 73–82.

    Article  PubMed  CAS  Google Scholar 

  15. Degermann S, Reilly C, Scott B, Ogata L, vonBoehmer H, Lo D: On the various manifestations of spontaneousauto immune diabetes in rodent models. Eur J Immunol 1994;24:3155–3160.

    Article  PubMed  CAS  Google Scholar 

  16. Crowley M, Lo D: Targeted gene knockouts: insights into dendritic cell biology: in Lotze MT, Thomson AW (eds). Dendritic Cells: Biology and Clinical Application. SanDiego, Academic Press, 1999, pp 579–593.

    Google Scholar 

  17. Wu L, D'Amico A, Winkel KD, Suter M, Lo D, Shortman K: RelB is essential for the development of myeloid-related CD8α-but not of lymphoid-related CD8ß+dendritic cells. Immunity 1998;9:839–847.

    Article  PubMed  CAS  Google Scholar 

  18. Gerloni M, Lo D, Zanetti M: DNA immunization in Relß-deficient mice discloses a role for dendritic cells in lgM→IgG1 switch in vivo. Eur J Immunol 1998;28:516–524.

    Article  PubMed  CAS  Google Scholar 

  19. DiMolfetto L, Neal HA, Wu A, Reilly C, Lo D: The density of the class 11 MHC Tcell receptor ligand influences IFN-7/IL-4 ratios in immune responses in vivo. Cell Immunol 1998;183:70–79.

    Article  PubMed  CAS  Google Scholar 

  20. Crowley MT, Reilly CR, Lo D: The influence of lymphocytes on the presence and organization of dendritic cell subsets in the spleen. J Immunol 1999;163:4894–4900.

    PubMed  CAS  Google Scholar 

  21. Lo D, Burkly LC, Widera G Cowing C, Flavell RA, Palmiter RD, Brinster RL: Diabetes and tolerance in transgenic mice expressing class II MHC molecules in pancreatic beta cells. Cell 1988; 53:159–168.

    Article  PubMed  CAS  Google Scholar 

  22. Markmann J, Lo D, Naji A, Palmiter RD, Brinster RL, Heber-Katz E: Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature 1998;336:476–479.

    Article  Google Scholar 

  23. Lo D, Burkly LC, Flavell RA, Palmiter RD, Brinster RL: Tolerence in transgenic mice expressing class II MHC on pancreatic acinar cells. J Exp Med 1989;170:87–104.

    Article  PubMed  CAS  Google Scholar 

  24. Burkly LC, Lo D, Kanagawa O, Brinster RL, Flavell RA: T-celltolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature 1989;342:564–566.

    Article  PubMed  CAS  Google Scholar 

  25. Lo D, Burkly LC, Flavel RA, Palmiter RD, Brinster RL: Antigen presentation in MHC class II transgenic mice: stimulation versus tolerization. Immunol Rev 1990; 117:121–134.

    Article  PubMed  CAS  Google Scholar 

  26. Lo D, Freedman J, Hesse S, Palmiter RD, Brinster RL, Sherman L: Peripheral tolerance to an islet cell specific hemagglutinin transgene affects both CD4+ and CD8+T cells. Eur J Immunol 1992;22:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  27. Morgan DJ, Liblau R, Scott B, Fleck S, McDevitt HO, Sarvetnick N, Lo D, Sherman LA: CD8+T cell-mediated spontaneous diabetes inneonatal mice. J Immunol 1996;157:978–983.

    PubMed  CAS  Google Scholar 

  28. Lo D, Freedman J, Hesse S, Brinster RL, Sherman L: Peripheral tolerance in transgenic mice: tolerance to class II MHC and non-MHC transgene antigens. Immunol Rev 1991;122: 87–102.

    Article  PubMed  CAS  Google Scholar 

  29. Ho I-C, Lo D, Glimcher LH: C-Maf promotes Th2 and attenuates Thl differentiation by both IL-4 dependent and independent mechanisms. J Exp Med 1998;188: 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  30. Pauza M, Neal H, Hagenbaugh A, Cheroutre H, Lo D: T cell production of an inducible transgene IL-10 provides limited protection from autoimmune diabetes. Diabetes 1999;48:1948–1953.

    Article  PubMed  CAS  Google Scholar 

  31. Pauza M, Smith KM, Neal H, Reilly CR, Lanier LL, Lo D: Transgenic expression of Ly-49A in thymocytes permits positive selection of forbidden clones. J Immunol 2000;164:884–892.

    PubMed  CAS  Google Scholar 

  32. Waldmann H, Cobbold S: How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu Rev Immunol 1998;16:619–644.

    Article  PubMed  CAS  Google Scholar 

  33. Wu A, Schulman SJ, Marconi LA, Reilly C, Scott B, Lo D: Protection against diabetes by MHC heterozygosity and reversal by cyclophosphamide. Cell Immunol 1998;184:112–120.

    Article  PubMed  CAS  Google Scholar 

  34. Li L, Crowley MR, Nguyen A, Lo D: Ability of a non-depleting anti-CD4 antibody to inhibit Th2 responses and allergic lung inflamation is independent of co-receptor function. J Immunol 1999;163: 6557–6566.

    PubMed  CAS  Google Scholar 

  35. Xia Y, Pauza M, Feng L, Lo D: RelB regulation of chemokine expression modulates local inflammation. Am J Pathol 1997;151: 375–387.

    PubMed  CAS  Google Scholar 

  36. Xia Y, Chen S, Wang Y, Mackman N, Ku G, Lo D, Feng L: RelB modulation of 1kbαstability as a mechanism of transcription suppression of IL-1α, IL-1ß, and TNFα in fibroblasts. Mol Cell Biol 1999:19: 7688–7696.

    PubMed  CAS  Google Scholar 

  37. Lo D, Feng L, Li L, Carson MJ, Crowley M, Pauza M, Nguyen A, Reilly C: Integrating innate and adaptive immunity in the whole animal. Immunol Rev 1999;169: 225–239.

    Article  PubMed  CAS  Google Scholar 

  38. Li L, Xia Y, Nguyen A, Feng L, Lo D: Th2 inducedeo taxin expression and eosinophilia coexist with Thl responses at the effector stage of lung inflammation. J Immunol 1998;161:3128–3135.

    PubMed  CAS  Google Scholar 

  39. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, Lo D: Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by lungpithelial cells. J Immunol 1999;162: 2477–2487.

    PubMed  CAS  Google Scholar 

  40. Tanabe S, Lu Z, Luo Y, Quackenbush EJ, Berman MA, Collins-Racie LA, Mi S, Reilly C, Lo D, Jacobs KA, Dorf ME: Identification of a new mouse β-chemokine, TC A-4, with activity on T lymphocytes and mesangial cells. J Immunol 1997;159:5671–5679.

    PubMed  CAS  Google Scholar 

  41. Fan L, Reilly CR, Luo Y, Dorf ME, Lo D: Cutting Edge: Ectopic expression of the chemokine TCA 4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 2000;164:(April 15).

  42. Lo D, Aftahi N, Reilly CR, Neal H, Sim B-C, Gascoigne NRJ, Kono D, Wu A, Schulman S, Scott B: Mapping genes regulating lymphocyte function: correlations with autoimmunity? in Theofilopoulos An (ed): Genes and Genetics of Autoimmunity (New Series: Current Directions in Autoimmunity) New York, Karger, 199, pp 226–246.

    Google Scholar 

  43. Sim B, Aftahi N, Reilly CR, Bogen B, Schwartz RH, Gascoigne NR, Lo D: Thymic skewing of the CD4/CD8 ratio maps with the T cell receptor α-chain locus. Curr Biol 1998;8:701–704.

    Article  PubMed  CAS  Google Scholar 

  44. Sim B-C, Lo D, Gascoigne NRJ: Preferential expression of TCR Vα, regions in CD4/CD8 subsets: class discrimination or co-receptor

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, D. Immune regulation. Immunol Res 21, 239–246 (2000). https://doi.org/10.1385/IR:21:2-3:239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:21:2-3:239

Key Words

Navigation