Skip to main content

Advertisement

Log in

Type I collagen and divalent cation shifts disrupt cell-cell adhesion, increase migration, and decrease PTHrP, IL-6, and IL-8 expression in pancreatic cancer cells

  • Research Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background: We have shown in FG pancreatic cancer cells that α2β1 integrin-mediated type I collagen adhesion decreases parathyroid hormone-related protein (PTHrP), inerleukin-6 (IL-6), and interleukin-8 (IL-8) expression, decreases the localization of E-cadherin and β-catenin in cell-cell contacts, increases cell migration, and increases glycogen synthase kinase 3 (GSK3) and protein kinase B (PKB/Akt) phosphorylation states relative to α5β1 integrin-mediated fibronectin (Fn) adhesion.

Aim of the Study: To extend our observations in FG cells to other pancreatic cancer cell lines, and to determine whether E-cadherin-mediated cell-cell adhesion and its downstream effectors were functionally involved in the ECM-mediated regulation of PTHrP, IL-6, and IL-8.

Methods: We used standard biochemical techniques to determine ECM-specific differences in E-cadherin and β-catenin localization, GSK3 and PKB/Akt phosphorylation, haptokinetic cell migration, and cytokine expression in pancreatic cancer cells. We also conducted functional studies using pharmacological inhibitors for GSK3 and PKB/Akt, as well as elevated Mg2+/Ca2+ ratios similar to pancreatic juice, and examined their effects on cytokine expression.

Results: Differences in E-cadherin and β-catenin localization along with GSK3 and PKB/Akt phosphorylation occur in multiple pancreatic cancer cell lines, resulting in differences in ECM-mediated haptokinesis and cytokine expression that are generally consistent with previous observations in FG cells. Our functional studies also suggest that E-cadherin-mediated cell-cell adhesion and downstream effectors are involved in PTHrP, IL-6, and IL-8 expression.

Conclusions: These data indicate that α2β1 integrin-mediated type I collagen adhesion disrupts cell-cell adhesion architecture, resulting in increased migration and decreased PTHrP, IL-6, and IL-8 expression in pancreatic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2(12):897–909.

    Article  PubMed  CAS  Google Scholar 

  2. Lohr M, Trautmann B, Gottler M, et al. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 1994;69(1):144–151.

    PubMed  CAS  Google Scholar 

  3. Linder S, Castanos-Velez E, von Rosen A, Biberfeld P. Immunohistochemical expression of extracellular matrix proteins and adhesion molecules in pancreatic carcinoma. Hepatogastroenterology 2001;48(41):1321–1327.

    PubMed  CAS  Google Scholar 

  4. Tani T, Lumme A, Linnala A, et al. Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am J Pathol 1997;151(5):1289–1302.

    PubMed  CAS  Google Scholar 

  5. Tempia-Caliera AA, Horvath LZ, Zimmermann A, et al. Adhesion molecules in human pancreatic cancer. J Surg Oncol 2002;79(2):93–100.

    Article  PubMed  CAS  Google Scholar 

  6. Iacobuzio-Donahue CA, Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 2003;63(24):8614–8622.

    PubMed  CAS  Google Scholar 

  7. Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162(4):1151–1162.

    PubMed  CAS  Google Scholar 

  8. Armstrong T, Packham G, Murphy LB, et al. Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 2004;10(21):7427–7437.

    Article  PubMed  CAS  Google Scholar 

  9. Bachem MG, Schunemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 2005;128(4):907–921.

    Article  PubMed  CAS  Google Scholar 

  10. Grzesiak JJ, Clopton P, Chalberg C, et al. The extracellular matrix differentially regulates the expression of PTHrP and the PTH/PTHrP receptor in FG pancreatic cancer cells. Pancreas 2004;29(2):85–92.

    Article  PubMed  CAS  Google Scholar 

  11. Grzesiak JJ, Smith KC, Burton DW, Deftos LJ, Bouvet M. GSK3 and PKB/Akt are associated with integrin-mediated regulation of PTHrP, IL-6 and IL-8 expression in FG pancreatic cancer cells. Int J Cancer 2005;114:522–530.

    Article  PubMed  CAS  Google Scholar 

  12. Ruoslahti E. RGD and other recognition sequences forintegrins. Annu Rev Cell Dev Biol 1996;12:697–715.

    Article  PubMed  CAS  Google Scholar 

  13. Wong NA, Pignatelli M. Beta-catenin—a linchpin in colorectal carcinogenesis? Am J Pathol 2002;160(2):389–401.

    PubMed  CAS  Google Scholar 

  14. Abdeen O, Pandol SJ, Burton DW, Deftos LJ. Parathyroid hormone-related protein expression in human gastric adenocarcinomas not associated with hypercalcemia. Am J Gastroenterol 1995;90(10):1864–1867.

    PubMed  CAS  Google Scholar 

  15. Carron JA, Fraser WD, Gallagher JA. PTHrP and the PTH/PTHrPreceptor are co-expressed in human breast and colon tumours. Br J Cancer 1997;76(8):1095–1098.

    PubMed  CAS  Google Scholar 

  16. Yeung SC, Eton O, Burton DW, Deftos LJ, Vassilopoulou-Sellin R, Gagel RF. Hypercalcemia due to parathyroid hormone-related protein secretion by melanoma. Horm Res 1998;49(6):288–291.

    Article  PubMed  CAS  Google Scholar 

  17. Deftos LJ. Granin-A, parathyroid hormone-related protein, and calcitonin gene products in neuroendocrine prostate cancer. Prostate Suppl 1998;8:23–31.

    Article  PubMed  CAS  Google Scholar 

  18. Bouvet M, Nardin SR, Burton DW, et al. Human pancreatic adenocarcinomas express parathyroid hormone-related protein. J Clin Endocrinol Metab 2001;86(1):310–316.

    Article  PubMed  CAS  Google Scholar 

  19. Bouvet M, Nardin SR, Burton DW, et al. Parathyroid hormone-related protein as a novel tumor marker in pancreatic adenocarcinoma. Pancreas 2002;24(3):284–290.

    Article  PubMed  Google Scholar 

  20. Hastings RH, Burton DW, Quintana RA, Biederman E, Gujral A, Deftos LJ. Parathyroid hormone-related protein regulates the growth of orthotopic human lung tumors in athymic mice. Cancer 2001;92(6):1402–1410.

    Article  PubMed  CAS  Google Scholar 

  21. Bakre MM, Zhu Y, Yin H, et al. Parathyroid hormone-related peptide is a naturally occurring, protein kinase A-dependent angiogenesis inhibitor. Nat Med 2002;8(9):995–1003.

    Article  PubMed  CAS  Google Scholar 

  22. Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 1999;19(8):5576–5587.

    PubMed  CAS  Google Scholar 

  23. Levy L, Neuveut C, Renard CA, et al. Transcriptional activation of interleukin-8 by beta-catenin-Tcf4. J Biol Chem 2002;277(44):42,386–42,393.

    Article  CAS  Google Scholar 

  24. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996;59(1):3–10.

    Article  PubMed  CAS  Google Scholar 

  25. Jan Y, Matter M, Pai JT, et al. A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 2004;116(5):751–762.

    Article  PubMed  CAS  Google Scholar 

  26. Pasqualini R, Bourdoulous S, Koivunen E, Woods VL, Jr., Ruoslahti E. A polymeric form of fibronectin has antimetastatic effects against multiple tumor types. Nat Med 1996;2(11):1197–1203.

    Article  PubMed  CAS  Google Scholar 

  27. Brinkmeier ML, Potok MA, Cha KB, et al. TCF and Groucho-related genes influence pituitary growth and development. Mol Endocrinol 2003;17(11):2152–2161.

    Article  PubMed  CAS  Google Scholar 

  28. Castanos-Velez E, Biberfeld P, Patarroyo M. Extracellular matrix proteins and integrin receptors in reactive and non-reactive lymph nodes. Immunology 1995;86(2):270–278.

    PubMed  CAS  Google Scholar 

  29. Lee BH, Ruoslahti E. alpha(5)beta(1) integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca(2+)/calmodulin-dependent protein kinase IV. J Cell Biochem 2005;95(6):1214–1223.

    Article  PubMed  CAS  Google Scholar 

  30. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;5(11):3711–3721.

    PubMed  CAS  Google Scholar 

  31. Friess H, Guo XZ, Nan BC, Kleeff O, Buchler MW. Growth factors and cytokines in pancreatic carcinogenesis. Ann N Y Acad Sci 1999;880:110–121.

    Article  PubMed  CAS  Google Scholar 

  32. Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res 2002;4(Suppl 3):S233-S242.

    Article  PubMed  Google Scholar 

  33. Becker C, Fantini MC, Schramm C, et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004;21(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  34. Wang AC, Fu L. Fibronectin regulates the activation of THP-1 cells by TGF-beta1. Inflamm Res 2001;50(3):142–148.

    Article  PubMed  CAS  Google Scholar 

  35. Grzesiak JJ, Davis GE, Kirchhofer D, Pierschbacher MD. Regulation of alpha 2 beta 1-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mg2+ and Ca2+. J Cell Biol 1992;117(5):1109–1117.

    Article  PubMed  CAS  Google Scholar 

  36. Grzesiak JJ, Pierschbacher MD. Changes in the concentrations of extracellular Mg++ and Ca++ down-regulate E-cadherin and up-regulate alpha 2 beta 1 integrin function, activating keratinocyte migration on type I collagen. J Invest Dermatol 1995;104(5):768–774.

    Article  PubMed  CAS  Google Scholar 

  37. Grzesiak JJ, Pierschbacher MD. Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest 1995;95(1):227–233.

    Article  PubMed  CAS  Google Scholar 

  38. Ishihara N, Yoshida A, Koizumi M. Metal concentrations in human pancreatic juice. Arch Environ Health 1987;42(6):356–360.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. AGSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett 1999;458(2):247–251.

    Article  PubMed  CAS  Google Scholar 

  40. Bax B, Carter PS, Lewis C, et al. The structure of phosphorylated GSK-3beta complexed with a peptide, FRAT-tide, that inhibits beta-catenin phosphorylation. Structure (Camb) 2001;9(12):1143–1152.

    Article  CAS  Google Scholar 

  41. Smith U, Carvalho E, Mosialou E, Beguinot F, Formisano P, Rondinone C. PKB inhibition prevents the stimulatory effect of insulin on glucose transport and protein translocation but not the antilipolytic effect in rat adipocytes. Biochem Biophys Res Commun 2000;268(2):315–320.

    Article  PubMed  CAS  Google Scholar 

  42. Deftos LJ, Gazdar AF, Ikeda K, Broadus AE. The parathyroid hormone-related protein associated with malignancy is secreted by neuroendocrine tumors. Mol Endocrinol 1989;3(3):503–508.

    PubMed  CAS  Google Scholar 

  43. Kirchhofer D, Grzesiak J, Pierschbacher MD. Calcium as a potential physiological regulator of integrin-mediated cell adhesion. J Biol Chem 1991;266(7):4471–4477.

    PubMed  CAS  Google Scholar 

  44. Menke A, Philippi C, Vogelmann R, et al. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 2001;61(8):3508–3517.

    PubMed  CAS  Google Scholar 

  45. Weinel RJ, Neumann K, Kisker O, Rosendahl A. Expression and potential role of E-cadherin in pancreatic carcinoma. Int J Pancreatol 1996;19(1):25–30.

    PubMed  CAS  Google Scholar 

  46. Toyoda E, Doi R, Koizumi M, et al. Analysis of E-, N-cadherin, alpha-, beta-, and gamma-catenin expression in human pancreatic carcinoma cell lines. Pancreas 2005;30(2):168–173.

    Article  PubMed  CAS  Google Scholar 

  47. Peng B, Fleming JB, Breslin T, et al. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. Clin Cancer Res 2002;8(11):3628–3638.

    PubMed  CAS  Google Scholar 

  48. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 2003;442(5):444–452.

    PubMed  Google Scholar 

  49. Monti P, Marchesi F, Reni M, et al. A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 2004;445(3):236–247.

    Article  PubMed  CAS  Google Scholar 

  50. Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 1997;8(12):1349–1358.

    PubMed  CAS  Google Scholar 

  51. Knudsen KA, Soler AP, Johnson KR, Wheelock MJ. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 1995;130(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  52. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S. Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 2004;28(1):38–44.

    Article  PubMed  CAS  Google Scholar 

  53. Sawai H, Yamamoto M, Okada Y, et al. Alteration of integrins by interleukin-1alpha in human pancreatic cancer cells. Pancreas 2001;23(4):399–405.

    Article  PubMed  CAS  Google Scholar 

  54. Lohr M, Trautmann B, Gottler M, et al. Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas. Pancreas 1996;12(3):248–259.

    Article  PubMed  CAS  Google Scholar 

  55. Ruoslahti E, Noble NA, Kagami S, Border WA. Integrins. Kidney Int Suppl 1994;44:S17-S22.

    PubMed  CAS  Google Scholar 

  56. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673–687.

    Article  PubMed  CAS  Google Scholar 

  57. Brabletz T, Spaderna S, Kolb J, et al. Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumor environment in malignant tumor progression. Cancer Res 2004;64(19):6973–6977.

    Article  PubMed  CAS  Google Scholar 

  58. Hodivala KJ, Watt FM. Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol 1994;124(4):589–600.

    Article  PubMed  CAS  Google Scholar 

  59. Mangin M, Ikeda K, Dreyer BE, Broadus AE. Identification of an up-stream promoter of the human parathyroid hormone-related peptide gene. Mol Endocrinol 1990;4(6):851–858.

    Article  PubMed  CAS  Google Scholar 

  60. Foley J, Dann P, Hong J, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001;128(4):513–525.

    PubMed  CAS  Google Scholar 

  61. Troussard AA, Mawji NM, Ong C, Mui A, St-Arnaud R, Dedhar S. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 2003;278(25):22,374–22,378.

    Article  CAS  Google Scholar 

  62. Shimoyama S, Gansauge F, Gansauge S, Oohara T, Beger HG. Altered expression of extracellular matrix molecules and their receptors in chronic pancreatitis and pancreatic adenocarcinoma in comparison with normal pancreas. Int J Pancreatol 1995;18(3):227–234.

    PubMed  CAS  Google Scholar 

  63. Menke A, Adler G. TGFbeta-induced fibrogenesis of the pancreas. Int J Gastrointest Cancer 2002;31(1–3):41–46.

    Article  PubMed  CAS  Google Scholar 

  64. Lohr M, Schmidt C, Ringel J, et al. Transforming growth factor-betal induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 2001;61(2):550–555.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bouvet MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesiak, J.J., Smith, K.C., Chalberg, C. et al. Type I collagen and divalent cation shifts disrupt cell-cell adhesion, increase migration, and decrease PTHrP, IL-6, and IL-8 expression in pancreatic cancer cells. Int J Gastrointest Canc 36, 131–146 (2005). https://doi.org/10.1385/IJGC:36:3:131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:36:3:131

Key Words

Navigation