Skip to main content

Advertisement

Log in

TGFβ-induced fibrogenesis of the pancreas

  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

The biological cause of fibrosis is the accumulation of excessive amounts of extracellular matrix (ECM) which leads to tissue dysfunction and organ failure. A strong correlation can be found between pancreatic diseases and fibrotic processes, in particular chronic pancreatitis and pancreatic cancer. There is growing evidence that pancreatic fibrosis represents a dysregulation of the normal repair processes after injury. This concept is based on the findings that fibrosis and tissue repair involve similar biological reactions regulated by the same group of molecules. The best characterized example for these regulatory molecules are the members of the transforming growth factor beta family (TGFβ). TGFβ1 represents the prototype of this family of highly similar growth factors, with the unique ability to stimulate the expression and deposition of extracellular matrix and to inhibit its degradation. Growth factor-induced fibrotic events are targeted by a myofibroblast-like cell called pancreatic stellate cell (PSC). These cells show enhanced expression of all-important ECM proteins after TGFβ stimulation including collagen, fibronectin and proteoglycans. At the same time TGFβ inhibits the degradation of ECM by blocking the secretion of proteases and stimulating the production of naturally occurring protease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hay ED. Extracellular matrix alters epithelial differentiation. Curr Opin Cell Biol 1993;5:1029–1035.

    Article  PubMed  CAS  Google Scholar 

  2. Hay ED. Biogenesis and organization of extracellular matrix. FASEB J 1999; 13 Suppl 2:S281-S283.

    PubMed  CAS  Google Scholar 

  3. Basque JR, Chailler P, Menard D. Laminins and TGF-beta maintain cell polarity and functionality of human gastric glandular epithelium. Am J Physiol Cell Physiol 2002;282:C873-C884.

    PubMed  CAS  Google Scholar 

  4. Verrecchia F, Mauviel A. Transforming Growth Factor-beta Signaling Through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. J Invest Dermatol 2002;118:211–215.

    Article  PubMed  CAS  Google Scholar 

  5. Eickelberg O. Endless healing: TGF-beta, SMADs, and fibrosis. FEBS Lett 2001;506:11–14.

    Article  PubMed  CAS  Google Scholar 

  6. Riesle E, Friess H, Zhao L, et al. Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair. Gut 1997;40:73–79.

    PubMed  CAS  Google Scholar 

  7. Santana A, Saxena B, Noble NA, Gold LI, Marshall BC. Increased expression of transforming growth factor beta isoforms (beta 1, beta 2, beta 3) in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 1995;13:34–44.

    PubMed  CAS  Google Scholar 

  8. Nakao A, Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest 1999;104:5–11.

    Article  PubMed  CAS  Google Scholar 

  9. Friess H, Lu Z, Riesle E, Uhl W, Brundler AM, Horvath L, Gold LI, Korc M, Büchler MW. Enhanced expression of TGF-betas and their receptors in human acute pancreatitis. Ann Surg 1998;227:95–104.

    Article  PubMed  CAS  Google Scholar 

  10. O’Kane S, Ferguson MW. Transforming growth factor beta’s and wound healing. Int J Biochem Cell Biol 1997;29:63–78.

    Article  PubMed  CAS  Google Scholar 

  11. Böttinger EP, Jakubczak JL, Roberts IS, et al. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J 1997;16:2621–2633.

    Article  PubMed  Google Scholar 

  12. van Laethem JL, Deviere J, Resibois A, et al. Localization of transforming growth factor beta 1 and its latent binding protein in human chronic pancreatitis. Gastroenterology 1995;108:1873–1881.

    Article  PubMed  Google Scholar 

  13. Gress TM, Müller-Pillasch F, Elsasser HP, et al. Enhancement of transforming growth factor beta 1 expression in the rat pancreas during regeneration from caerulein-induced pancreatitis. Eur J Clin Invest 1994;24:679–685.

    Article  PubMed  CAS  Google Scholar 

  14. Menke A, Yamaguchi H, Gress TM, Adler G. Extracellular matrix is reduced by inhibition of transforming growth factor β1 in pancreatitis in the rat. Gastroenterology 1997;113:295–303.

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy RH, Bockman DE, Uscanga L, Choux R, Grimaud JA, Sarles H. Pancreatic extracellular matrix alterations in chronic pancreatitis. Pancreas 1987;2:61–72.

    Article  PubMed  CAS  Google Scholar 

  16. Kasuga H, Ito Y, Sakamoto S, et al. Effects of anti-TGF-beta type II receptor antibody on experimental glomerulonephritis. Kidney Int 2001;60:1745–1755.

    Article  PubMed  CAS  Google Scholar 

  17. Isaka Y, Brees DK, Ikegaya K, et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 1996;2:418–423.

    Article  PubMed  CAS  Google Scholar 

  18. Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992;360:361–364.

    Article  PubMed  CAS  Google Scholar 

  19. Kopp JB, Factor VM, Mozes M, et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 1996;74:991–1003.

    PubMed  CAS  Google Scholar 

  20. Sanvito F, Nichols A, Herrera PL, et al. TGF-beta 1 over-expression in murine pancreas induces chronic pancreatitis and together with TNF-alpha, triggers insulin-dependent diabetes. Biochem Biophys Res Commun 1995;217:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  21. Vogelmann R, Ruf D, Wagner M, et al. Development of pancreatic fibrosis in a TGFβ transgenic mouse. Gastroenterology 1999;116:1174–1175.

    Google Scholar 

  22. Sanvito F, Herrera PL, Huarte J, et al. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 1994;120:3451–3462.

    PubMed  CAS  Google Scholar 

  23. Vogelmann R, Ruf D, Wagner M, Adler G, Menke A. Effects of fibrogenic mediators on the development of pancreatic fibrosis in a TGF-beta1 transgenic mouse model. Am J Physiol Gastrointest Liver Physiol 2001;280:G164-G172.

    PubMed  CAS  Google Scholar 

  24. Alexander CM, Werb Z. Proteinases and extracellular matrix remodeling. Curr Opin Cell Biol 1989;1:974–982.

    Article  PubMed  CAS  Google Scholar 

  25. Müller-Pillasch F, Gress TM, Yamaguchi H, Geng M, Adler G, Menke A. The influence of transforming growth factor β1 on the expression of genes coding for extracellular matrix metalloproteinases and tissue inhibitors of metalloproteinases during regeneration from caerulein-induced pancreatitis. Pancreas 1997;15:168–175.

    Article  PubMed  Google Scholar 

  26. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. TIG 1990;6:121–125.

    PubMed  CAS  Google Scholar 

  27. Edwards DR, Murphy G, Reynolds JJ, et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 1987;6:1899–1904.

    PubMed  CAS  Google Scholar 

  28. Kerr LD, Miller DB, Matrisian LM. TGF-β1 inhibition of transin/stromelysin gene expression is mediated through as fos binding sequence. Cell 1990;61:267–278.

    Article  PubMed  CAS  Google Scholar 

  29. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  CAS  Google Scholar 

  30. Roberts AB, Flanders KC, Heine UI, et al. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci 1990;327:145–154.

    Article  PubMed  CAS  Google Scholar 

  31. Miyazono K, Heldin CH. The mechanism of action of transforming growth factor-beta. Gastroenterol Jpn 1993;28:Suppl 4:81–85.

    PubMed  CAS  Google Scholar 

  32. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-β signal transduction. J Cell Sci 2001;114:4359–4369.

    PubMed  CAS  Google Scholar 

  33. Yue J, Mulder KM. Transforming growth factor-beta signal transduction in epithelial cells. Pharmacol Ther 2001;91:1–34.

    Article  PubMed  CAS  Google Scholar 

  34. Piek E, Heldin CH, Ten DP. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999;13:2105–2124.

    PubMed  CAS  Google Scholar 

  35. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem 1994;269:14,828–14,834.

    CAS  Google Scholar 

  36. Ritzenthaler JD, Goldstein RH, Fine A, Lichtler A, Rowe DW, Smith BD. Transforming-growth-factor-beta activation elements in the distal promoter regions of the rat alpha 1 type I collagen gene. Biochem J 1991;280:157–162.

    PubMed  CAS  Google Scholar 

  37. Roberts AB, Heine UI, Flanders KC, Sporn MB. Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann N Y Acad Sci 1990;580:225–232.

    Article  PubMed  CAS  Google Scholar 

  38. Wenger C, Ellenrieder V, Alber B, et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 1999;18:1073–1080.

    Article  PubMed  CAS  Google Scholar 

  39. Schuppan D, Strobel D, Hahn EG. Hepatic fibrosis—therapeutic strategies. Digestion 1998;59:385–390.

    Article  PubMed  CAS  Google Scholar 

  40. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996;7:469–480.

    PubMed  CAS  Google Scholar 

  41. Kato Y, Inoue H, Fujiyama Y, Bamba T. Morphological identification of and collagen synthesis by periacinar fibroblastoid cells cultured from isolated rat pancreatic acini. J Gastroenterol 1996;31:565–571.

    Article  PubMed  CAS  Google Scholar 

  42. Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 1998;115:421–432.

    Article  PubMed  CAS  Google Scholar 

  43. Gressner AM. The cell biology of liver fibrogenesis—an imbalance of proliferation, growth arrest and apoptosis of myofibroblasts. Cell Tissue Res 1998;292:447–452.

    Article  PubMed  CAS  Google Scholar 

  44. Bachem MG, Schmid-Kotsas A, Gross H-J, et al. Pancreatic stellate cells and their role in human pancreatic fibrogenesis, in Chronic Pancreatitis: Novel Concepts in Biology and Therapy, Büchler MW, Friess H, Uhl W, Malfertheiner P, eds., Blackwell Science, Berlin: 2001;134–147.

    Google Scholar 

  45. Schneider E, Schmid-Kotsas A, Zhao J, et al. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol 2001;281:C532-C543.

    PubMed  CAS  Google Scholar 

  46. Luttenberger T, Schmid-Kotsas A, Menke A, et al. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Lab Invest 2000;80:47–55.

    Article  PubMed  CAS  Google Scholar 

  47. Gress TM, Müller-Pillasch F, Lerch MM, Friess H, Büchler M, Adler G. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer. Int J Cancer 1995;62:407–413.

    Article  PubMed  CAS  Google Scholar 

  48. Klöppel G. Pathology of nonendocrine pancreatic tumors, in The Pancreas: Biology, Pathobiology, and Diseases, Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA, eds., Raven Press, New York: 1993;871–897.

    Google Scholar 

  49. Friess H, Yamanaka Y, Büchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105:1846–1856.

    PubMed  CAS  Google Scholar 

  50. Ellenrieder V, Hendler S, Ruhland S, Boeck W, Adler G, Gress TM. TGF-β-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and urokinase plasminogen activator system. Int J Cancer 2001;93:204–211.

    Article  PubMed  CAS  Google Scholar 

  51. Menke A, Philippi C, Vogelmann R, et al. Down-regulation of E-cadherin gene expression by collagen Type I and Type III in pancreatic cancer cell lines. Cancer Res 2001;61:3508–3517.

    PubMed  CAS  Google Scholar 

  52. Border WA, Noble NA. TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int 1997;51:1388–1396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Menke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menke, A., Adler, G. TGFβ-induced fibrogenesis of the pancreas. Int J Gastrointest Canc 31, 41–46 (2002). https://doi.org/10.1385/IJGC:31:1-3:41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:31:1-3:41

Key Words

Navigation