Skip to main content
Log in

Expression of proteinase-activated receptor 2 during taurocholate-induced acute pancreatic lesion development in wistar rats

  • Research Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background: Proteinase-activated receptor 2 (PAR-2) is a G-protein coupled transmembrane receptor activated by trypsin by site-specific cleavage. Its presence on pancreatic structures was demonstrated in the past. PAR-2 physiologically involves in duct/ acinary cells secretion, arterial tonus regulation or capillary liquid turnover. During development of acute pancreatitis/ acute pancreatic lesion (APL) these mentioned structures are influenced by very high concentration of trypsin due to its increased basolateral secretion into the interstitium. The aim of our study as presented was to investigate whether PAR-2 is also involved in APL following changes of PAR-2 expression.

Methods: APL was investigated in Wistar rats after injection of 0.1 mL taurocholate into the ductus choledochus. Anatomy, histology, reverse transcriptase polymerase chain reaction (RT PCR) as well as immunohistochemistry and Western-blot analysis of pancreatic tissue were performed using antibody mapping of the new NH2 terminal of PAR-2 after trypsin cleavage. Results from control rats and d 1 or d 4 rats after taurocholate injection were compared.

Results: Much higher positivity on acinary/ duct cells was observed in APL induced animals than in controls. Similar findings were noticed on arterial smooth muscle cells. Surprisingly, parallel to the exocrine pancreas and vessel findings, enhanced Langerhans’ islet cell positivity was observed in experimental animals.

Conclusions: Based on these results, we have demonstrated that during APL development PAR-2 expression increases. This effect is caused by conformational changes after PAR-2 activation, and the new NH2 terminal of activated receptor presentation. We suggest that PAR-2 physiological functions are enhanced during APL development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas C. Histopathology, 8th ed, B.C. Decker Inc., Toronto, Philadelphia, 1989; p. 64.

    Google Scholar 

  2. Rattner DW. Experimental models of acute pancreatitis and their relevance to human disease. Scand J Gastroenterol Suppl 1996;219:6–9.

    Article  PubMed  CAS  Google Scholar 

  3. Cook LJ, Musa OA, Case RM. Intracellular transport of pancreatic enzymes. Scand J Gastroenterol Suppl 1996;219:1–5.

    Article  PubMed  CAS  Google Scholar 

  4. McKay CJ, Gallagher G, Brooks B, Imrie CW, Baxter JN. Increased monocyte cytokine production in association with systemic complications in acute pancreatitis. Br J Surg 1996;83(7):919–923.

    Article  PubMed  CAS  Google Scholar 

  5. Scholmerich J. Interleukins in acute pancreatitis. Scand J Gastroenterol Suppl 1996;219:37–42.

    Article  PubMed  CAS  Google Scholar 

  6. Sweiry JH, Mann GE. Role of oxidative stress in the pathogenesis of acute pancreatitis. Scand J Gastroenterol Suppl 1996;219:10–15.

    Article  PubMed  CAS  Google Scholar 

  7. Bohm S, Kong W, Bunnett NW. Molecular cloning expression and potential function of the human proteinase activated receptor 2. Biochem J 1996;314:1009–1016.

    PubMed  Google Scholar 

  8. Deri O, Corvera C, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 1998;274:C1429-C1452.

    Google Scholar 

  9. Kaufmann R, Schafberg H, Nowak G. Proteinase-activated receptor-2-mediated signaling and inhibition of DNA synthesis in human pancreatic cancer cells. Int J Pancreatol 1998;24(2):97–102.

    PubMed  CAS  Google Scholar 

  10. Nysted S, Emilsson K, Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor-2. Eur J Biochem 1995;232:84–89.

    Article  Google Scholar 

  11. Saudek F, Cihalova E, Karasova L, Kobylka P, Lomsky R. Increased glucagon-stimulated insulin secretion of cryo-preserved rat islets transplanted into nude mice. J Mol Med 1999;77(1):107–110.

    Article  PubMed  CAS  Google Scholar 

  12. Saudek F, Kazdova L, Nozickova M, Vrana A, Cihalova E, Ruzbarsky V. The effect of combination therapy with cyclosporine A and hydrocortisone on glucose metabolism in diabetic rats following pancreatic islet transplantation. Physiol Res 1995;44(2):79–86.

    PubMed  CAS  Google Scholar 

  13. Smith-Swintosky VL, Cheo-Isaacs CT, D’Andrea MR, Santulli RJ, Darrow AL, Andrade-Gordon P. Protease-activated receptor-2 (PAR-2) is present in the rat hippocampus and is associated with neurodegeneration. J Neurochem 1997;69(5):1890–1896.

    Article  PubMed  CAS  Google Scholar 

  14. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol Rev 2001;53(2):245–82.

    PubMed  CAS  Google Scholar 

  15. Santa Cruz Biotechnology, Inc., Data on file. SC-8207; www.sclot.com

  16. Kong W, McConalogue K, Bunnet NW. Luminal trypsin may regulate enterocytes through proteinase activatedrecptor 2. Proc Natl Acad Sci USA 1997;94:8884–8889.

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, Bunnett NW. Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest 1999;103(2):261–269.

    Article  PubMed  CAS  Google Scholar 

  18. Kawabata A, Nishikawa H, Kuroda R, Kawai K, Hollenberg MD. Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 2000;129(8):1808–1814.

    Article  PubMed  CAS  Google Scholar 

  19. D Andrea MR, Rogahn CJ, Andrade-Gordon P. Localisation PAR-1 and PAR-2 in human mast cells: indications for an amplified mast cell degranulation cascade. Biotech Histochem 2000;75(2):85–90.

    Article  CAS  Google Scholar 

  20. Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M. The protease-activated receptor-2 upregulates keratinocyte phagocytosis. J Cell Sci 2000;113(Pt 17):3093–3101.

    PubMed  CAS  Google Scholar 

  21. Seiberg M, Paine C, Sharlow E, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res 2000;10;254(10):25–32.

    Article  PubMed  CAS  Google Scholar 

  22. Belham CM, Tate RJ, Scott PH, et al. Trypsin stimulates proteinase-activated receptor-2-dependent and-independent activation of mitogen-activated protein kinases. Biochem J 1996;329(Pt 3):939–46.

    Google Scholar 

  23. Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem 2000;275(45):35584–35591.

    Article  PubMed  CAS  Google Scholar 

  24. Beynon RJ, Kay J. Enteropancreatic circulation of digestive enzyme. Nature 1976;260(5546):78–90.

    Article  PubMed  CAS  Google Scholar 

  25. Heinrich HC, Gabbe EE, Bruggemann J, Icagic F, Classen M. Enteropancreatic circulation of trypsin in man. Klin Wochenschr 1979;57(23):1295–1297.

    Article  PubMed  CAS  Google Scholar 

  26. Grandaliano G, Monno R, Ranieri E, et al. Regenerative and proinflammatory effects of thrombin on human proximal tubular cells. J Am Soc Nephrol 2000;11(6):1016–1025.

    PubMed  CAS  Google Scholar 

  27. Malka D, Hammel P, Sauvanet A, et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology 2000;119(5):1324–1332.

    Article  PubMed  CAS  Google Scholar 

  28. Toyama MT, Lewis MP, Kusske AM, Reber PU, Ashley SW, Reber HA. Ischaemia-reperfusion mechanisms in acute pancreatitis. Scand J Gastroenterol Suppl. 1996;219:20–23.

    Article  PubMed  CAS  Google Scholar 

  29. Moffatt JD, Cocks TM. Endothelium-dependent and -independent responses to protease-activated receptor-2 (PAR-2) activation in mouse isolated renal arteries. Br J Pharmacol 1998;125(4):591–594.

    Article  PubMed  CAS  Google Scholar 

  30. Cheung WM, Andrade-Gordon P, Derian CK, Damiano BP. Receptor-activating peptides distinguish thrombin receptor (PAR-1) and protease activated receptor 2 (PAR-2) mediated hemodynamic responses in vivo. Can J Physiol Pharmacol 1998;76(1):16–25.

    Article  PubMed  CAS  Google Scholar 

  31. Cicala C, Pinto A, Bucci M, et al. Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo. Circulation 1999;99(19):2590–2597.

    PubMed  CAS  Google Scholar 

  32. Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M. Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol 1998;125(3):419–422.

    Article  PubMed  CAS  Google Scholar 

  33. Mari B, Guerin S, Far DF, et al. Thrombin and trypsin-induced Ca(2+) mobilization in human T cell lines through interaction with different protease-activated receptors. FASEB J 1996;19(2):309–316.

    Google Scholar 

  34. Howells GL, Macey MG, Chinni C, et al. Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci 1997;110(Pt 7):881–887.

    PubMed  CAS  Google Scholar 

  35. Wakita H, Furukawa F, Takigawa M. Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Physicians 1997;109(2):190–207.

    PubMed  CAS  Google Scholar 

  36. McKay C, Imrie CW, Baxter JN. Mononuclear phagocyte activation and acute pancreatitis. Scand J Gastroenterol Suppl 1996;219:32–36.

    Article  PubMed  CAS  Google Scholar 

  37. Akers IA, Parsons M, Hill MR, et al. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 2000;278(1):L193–201.

    PubMed  CAS  Google Scholar 

  38. Ruoss SJ, Hartmann T, Caughey GH. Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 1991;88(2):493–499.

    Article  PubMed  CAS  Google Scholar 

  39. Chen YZ, Ikei S, Yamaguchi Y, et al. The protective effects of long-acting recombinant human pancreatic secretory trypsin inhibitor (R44S-PSTI) in a rat model of cerulein-induced pancreatitis. Int Med Res 1996;24(1):59–68.

    Google Scholar 

  40. Maruyama N, Hirano F, Yoshikawa N, Migita K, Eguchi K, Tanaka H. Thrombin stimulates cell proliferation in human fibroblast-like synoviocytes in nuclear factor-kappaB activation and protein kinaseC mediated pathway. J Rheumatol 2000;27(12):2777–2785.

    PubMed  CAS  Google Scholar 

  41. Moriyama S, Ayson FG, Kawauchi H. Growth regulation by insulin-like growth factor-1 in fish. Biosci Biotechnol Biochem 2000;64(8):1553–1562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Olejár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olejár, T., Matěj, R., Zadinová, M. et al. Expression of proteinase-activated receptor 2 during taurocholate-induced acute pancreatic lesion development in wistar rats. Int J Gastrointest Canc 30, 113–121 (2001). https://doi.org/10.1385/IJGC:30:3:113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:30:3:113

Key Words

Navigation