Skip to main content
Log in

Immunocytochemical localization of prohormone convertase 1/3 and 2 in thyroid C-cells and medullary thyroid carcinomas

  • Clinical Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Prohormone convertases (PCs) are the key enzymes in the regulated pathways for the posttranslational processing of peptide hormones and are involved in converting larger prohormones to smaller, biologically active hormones. Immunolocalization of PC1/3 and PC2 was performed with thyroid C-cells from normal thyroid glands and medullary thyroid carcinomas (MTCs); thyroid C-cells were not consistently positive for PCs, whereas MTCs were consistently positive for PCs. Positive staining for PCs included tumor cell nests adjacent to the main MTCs in cases of multiple endocrine neoplasia type 2. Procalcitonin was originally detected in MTCs and a large amount of procalcitonin was present together with abundant PCs in MTCs. Thus, immunocytochemical staining for PCs may be another characteristic of MTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steiner DF, Oyer PE. The biosynthesis for insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci USA 57:473–480, 1967.

    Article  PubMed  CAS  Google Scholar 

  2. Steiner DF, Cunningham D, Spigelman L, Aten B. Insulin biosynthesis: Evidence for a precursor. Science 157:697–700, 1967.

    Article  PubMed  CAS  Google Scholar 

  3. Kitabchi A. Proinsulin and C-peptide. In: Ellenberg M, Rifkin, H, eds. Diabetes mellitus. New York: Medical Examination Publisher, 1983; 97–117.

    Google Scholar 

  4. Conlon JM. In: Unger RH, Orci L, eds. Glucagon. The diabetes annual. New York: Elselvier, 1981; 56–75.

    Google Scholar 

  5. Schields D. In vitro biosynthesis of somatostatin. J Biol Chem 255:11,625–11,628, 1980.

    Google Scholar 

  6. Leiter AB, Keutmann HT, Goodman RH. Structure of a precursor to human pancreatic peptide. J Biol Chem 259:14,702–14,705, 1984.

    CAS  Google Scholar 

  7. Boel E, Vuust J, Norris F, Norris K, Wind A, Rehfield JF, Marcker KA. Molecular cloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc Natl Acad Sci USA 80:2866–2869, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Varicek TJ, McDevitt BE, Freeman MW, Fennick BJ, Hendy GN, Potts JT Jr, Rick A, Kruneberg HM. Nucleotide sequence of the human parathyroid hormone gene. Proc Natl Acad Sci USA 80:2127–2131, 1983.

    Article  Google Scholar 

  9. Seidah N, Chretien M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol 244:175–188, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Davidson HW, Rhodes CJ, Hutton JC. Intragranular calcium and pH control proinsulin cleavage in the pancreatic B cell via two distinct site-specific endopeptidases. Nature 333:93–96, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Smeekens SP, Steiner DF. Identification of human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibelic processing protease Kex 2. J Biol Chem 265:2997–3000, 1990.

    PubMed  CAS  Google Scholar 

  12. Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC 2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci USA 88:340–344, 1988.

    Article  Google Scholar 

  13. Smeekens SP, Montag AG, Thomas G, Albiges-Rizo C, Carrol R, Benig M, Steiner DF: Proinsulin processing by the sublilis-inrelated proprotein convertases furin, PC 2 and PC 3. Proc Natl Acad Sci USA 89:8822–8826, 1989.

    Article  Google Scholar 

  14. Roth J, Kloppel G, Madsen O, Storch M, Heitz PU. Distribution pattern of proinsulin and insulin in human insulinomas: an immunocytochemical analysis in 76 tumors. Virchows Arch B Cell Molec Pathol 63:51–61, 1992.

    CAS  Google Scholar 

  15. Roth J, Komminoth P, Heitz PU. Topographic abnormalities of proinsulin-insulin conversion in functioning human insulinomas: correlation of immunoelectron microscopic and clinical data. Am J Pathol 147:489–502, 1995.

    PubMed  CAS  Google Scholar 

  16. Roulle Y, Bianachi M, Irminger JC, Halbin PA. Role of the prohormone convertase PC2 in the processing of proglucagon to glucagon. FEBS Lett 413:119–123, 1997.

    Article  Google Scholar 

  17. Austin LA, Heath H III: Calcitonin: physiology and pathophysiology. N Eng J Med 304:269–278, 1981.

    Article  CAS  Google Scholar 

  18. Hilaud G. Clinical and functional aspects of a unique tumor marker, calcitonin. In: Pecile A, ed. Calcitonin. Amsterdam: Excepta Media, 1994; 449–455.

    Google Scholar 

  19. Civitelli R, Avioli LV. The biochemistry and function of calcitropic hormones. In: Crass MF, Avioli MF, eds. Calcium regulating hormones and cardiovascular function. Boca Raton: CRC Press, 1995; 1–44.

    Google Scholar 

  20. Meisner M, Tschaikowsky K, Schnabel S, Schmidt J, Katalinic A, Schuttler J. Procalcitonin—influence of temperature, storage, anticoagulation and arterial or venous assertion of blood sample on procalcitonin concentration. Eur J Clin Chem Clin Biochem 35:597–601, 1997.

    PubMed  CAS  Google Scholar 

  21. Tomita T, Millard DM C-cell hyperplasia in secondary hyperparathyroidism. Histopathology 21:469–474, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Wolfe HJ, Woekel EF, Tashjian AH Jr. Distribution of calcitonin-containing cells in normal adult thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab 38:688–694, 1974.

    PubMed  CAS  Google Scholar 

  23. Dermody WC, Ananthawamy R, Rosen MA, Perini F, Levy AG. Immunological, biochemical, and enzymatic valdation of radioimmunoassays specific to the amino and carboxy terminal of human calcitonin. Clin Chem 26:235–242, 1980.

    PubMed  CAS  Google Scholar 

  24. Tomita T, Friesen SR, Kimmel JR, Doull V, Pollock HG. Pancreatic polypeptide-secreting islet cell tumors. Am J Pathol 113:134–142, 1983.

    PubMed  CAS  Google Scholar 

  25. Trouillas J, Girod C, Sassolas G, Vitte PA, Glaustrat B, Perrin G. A human beta-endor-phin pituitary adenoma. J Clin Endocrinol Metab 58:242–249, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Weber CJ, Russel J, Chryssochos JT, Hagler M, McGarity WC. Parathyroid hormone concentration distinguishes true normal parathyroid from parathyroids for patients with primary hyperparathyroidism. World J Surg 20:1010–1015, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Cottoretti G, Becker MGM, Key G, Duckrow, M, Schutter C, Galle J, Gerdes J. Monoclonal antibodies against recombinant parts of Ki-67 antigen detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol 168:357–363, 1992.

    Article  Google Scholar 

  28. Neerman-Arbez M, Cirulli V, Halban PA. Levels of conversion endopeptidases PC 1 and PC 2 distinguish between insulin-producing pancreatic islet beta cells and non-beta cells. Biochem J 300:57–61, 1994.

    PubMed  CAS  Google Scholar 

  29. Itoh Y, Tanaka S, Takekoshi S, Itoh J, Osamura Y. Prohormone convertases (PC 1/3 and PC 2) in rat and human pancreas and islet cell tumors: subcellular immunohistochemical analysis. Pathol Int 46:726–737, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Takumi I, Steiner DF, Sanno N, Teramoto A, Osamura RY. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Modern Pathol 11:232–238, 1998.

    CAS  Google Scholar 

  31. Rosai J. Thyroid gland. In: Rosai J, ed., Ackerman’s surgical pathology. 8th ed. St. Louis: Mosby, 1996; 493–567.

    Google Scholar 

  32. Franssiola KO. The thyroid. In: Lechago J, Gould VE, eds. Bloodworth’s endocrine pathology. 3rd ed., Baltimore: Williams & Wilkins, 1997; 171–247.

    Google Scholar 

  33. Tomita T. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in thyroid C-cells and medullary thyroid carcinomas. Histopathology 31:150–156, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Bustros AC, Baylin SB. Medullary carcinoma of the thyroid. In: Braverman LE, Utiger RD, ed. The thyroid. 7th ed. Philadelphia: JB Lippincott, 1996; 1166–1183.

    Google Scholar 

  35. Lloyd RV, Jin L, Qian X, Scheithauser BW, Young WF Jr, Davis DH. Analysis of the chromogranin A post-translational cleavage product pancreastatin and the prohormone convertases PC2 and PC3 in normal and neoplastic human pituitaries. Am J Pathol 146:1188–1198, 1995.

    PubMed  CAS  Google Scholar 

  36. Osamura RY, Yasuda O, Kawakami I, Itoh Y, Inada K, Kakudo K. Immunoreactive microscopic demonstration of regulated pathway for calcitonin and constitutive pathway of CEA in the same cells of human MTC of thyroid gland. Modern Pathol 10:7–11, 1997.

    CAS  Google Scholar 

  37. Whang KT, Steinwald PM, White JC, Snider RH, Simon GL, Goldberg RL, Becker KL. Serum calcitonin precursors in sepsis and systemic inflammation. J Clin Endocinol Metab 83:296–301, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, T. Immunocytochemical localization of prohormone convertase 1/3 and 2 in thyroid C-cells and medullary thyroid carcinomas. Endocr Pathol 11, 165–172 (2000). https://doi.org/10.1385/EP:11:2:165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:11:2:165

Key Words

Navigation