Skip to main content
Log in

Endothelin-1 receptor blockade prevented the electrophysiological dysfunction in cardiac myocytes of streptozotocin-induced diabetic rats

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetes mellitus is complicated with the development of cardiac contractile dysfunction and electrical instability, which contributes to high morbidity and mortality in diabetic patients. This study examined the possible roles of enhanced endothelin-1 (ET-1) on diabetes-induced alterations in ventricular myocyte electrophysiology. Type 1 diabetic rats were induced by single dose injection of streptozotocin (STZ) and treated with or without ET-1 receptor antagonist bosentan for 8 wk before myocyte isolation. Action potential, outward K+ currents, and inward Ca2+ currents in ventricular myocytes were recorded using whole-cell patch clamp technique. STZ-injected rats exhibited hyperglycemia, reduced body weight gain, and elevated plasma ET-1 concentration, indicative of diabetes induction. Ventricular myocytes isolated from diabetic rats exhibited prolonged action potential and reduced all three types of outward K+ currents. Resting membrane potential, height of action potential, and L-type Ca2+ current were not altered in diabetic myocytes. In vivo chronic treatment of diabetic rats with bosentan significantly augmented K+ currents and reversed action potential prolongation in ventricular myocytes. On the other hand, bosentan treatment had no detectable effect on the electrophysiological properties in control myocytes. In addition, bosentan had no effect on L-type Ca2+ currents in both control and diabetic myocytes. Our data suggest that altered electrophysiological properties in ventricular myocytes were largely resulted from augmented ET-1 system in diabetic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hileeto, D., Cukiernik, M., Mukherjee, S., et al. (2002). Diabetes Metab. Res. Rev. 18, 386–394.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, S., Evans, T., Mukherjee, K., Karmazyn, M., and Chakrabarti, S. (2000). J. Mol. Cell Cardiol. 32, 1621–1629.

    Article  PubMed  CAS  Google Scholar 

  3. Malhotra, A., Penpargkul, S., Fein, F. S., Sonnenblick, E. H., and Scheuer, J. (1981). Circ. Res. 49, 1243–1250.

    PubMed  CAS  Google Scholar 

  4. Zhang, X., Ye, G., Duan, J., Chen, A. F., and Ren, J. (2003). Endocr. Res. 29, 227–236.

    Article  PubMed  CAS  Google Scholar 

  5. Casis, O., Gallego, M., Iriarte, M., and Sanchez-Chapula, J. A. (2000). Diabetologia 43, 101–109.

    Article  PubMed  CAS  Google Scholar 

  6. Nobe, S., Aomine, M., Arita, M., Ito, S., and Takaki, R. (1990). Cardiovasc. Res. 24, 381–389.

    Article  PubMed  CAS  Google Scholar 

  7. Jourdon, P. and Feuvray, D. (1993). J. Physiol. 470, 411–429.

    PubMed  CAS  Google Scholar 

  8. Shimoni, Y., Hunt, D., Chuang, M., Chen, K. Y., Kargacin, G., and Severson, D. L. (2005). J. Physiol. 567, 177–190.

    Article  PubMed  CAS  Google Scholar 

  9. Pacher, P., Ungvari, Z., Nanasi, P. P., and Kecskemeti, V. (1999). Acta Physiol. Scand. 166, 7–13.

    Article  PubMed  CAS  Google Scholar 

  10. Robillon, J. F., Sadoul, J. L., Benmerabet, S., Joly-Lemoine, L., Fredenrich, A., and Canivet, B. (1999). Diabetes Metab. 25, 419–423.

    PubMed  CAS  Google Scholar 

  11. Magyar, J., Iost, N., Kortvely, A., et al. (2000). Pflugers Arch. 441, 144–149.

    Article  PubMed  CAS  Google Scholar 

  12. Shimoni, Y., Severson, D., and Giles, W. (1995). J. Physiol. 488, 673–688.

    PubMed  CAS  Google Scholar 

  13. Chen, S., Evans, T., Mukherjee, K., Karmazyn, M., and Chakrabarti, S. (2000). J. Mol. Cell Cardiol. 32, 1621–1629.

    Article  PubMed  CAS  Google Scholar 

  14. Erbas, T., Erbas, B., Kabakci, G., Aksoyek, S., Koray, Z., and Gedik, O. (2000). Clin. Cardiol. 23, 259–263.

    Article  PubMed  CAS  Google Scholar 

  15. Makino, A. and Kamata, K. (1998). Br. J. Pharmacol. 123, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  16. Verma, S., Arikawa, E., and McNeill, J. H. (2001). Am. J. Hypertens. 14, 679–687.

    Article  PubMed  CAS  Google Scholar 

  17. Ding, Y., Zou, R., Judd, R. L., Schwartz, D. D., and Zhong, J. (2006). J. Cardiothora-Ren. Res. 1, 23–32.

    Article  Google Scholar 

  18. Nerbonne, J. M. and Kass, R. S. (2005). Physiol. Rev. 85, 1205–1253.

    Article  PubMed  CAS  Google Scholar 

  19. Rana, B. S., Band, M. M., Ogston, S., Morris, A. D., Pringle, S. D., and Struthers, A. D. (2002). Am. J. Cardiol. 90, 483–487.

    Article  PubMed  Google Scholar 

  20. Landstedt-Hallin, L., Englund, A., Adamson, U., and Lins, P. E. (1999). J. Intern. Med. 246, 299–307.

    Article  PubMed  CAS  Google Scholar 

  21. El-Atat, F. A., McFarlane, S. I., Sowers, J. R., and Bigger, J. T. (2004). Curr. Diab. Rep. 4, 187–193.

    Article  PubMed  Google Scholar 

  22. Xu, Z., Patel, K. P., Lou, M. F., and Rozanski, G. J. (2002). Cardiovasc. Res. 53, 80–88.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, D. W., Kiyosue, T., Shigematsu, S., and Arita, M. (1995). Am. J. Physiol. 269, H1288-H1296.

    PubMed  CAS  Google Scholar 

  24. Shimoni, Y. and Liu, X. F. (2003). J. Physiol. 550, 401–412.

    Article  PubMed  CAS  Google Scholar 

  25. Pierce, G. N. and Russell, J. C. (1997). Cardiovasc. Res. 34, 41–47.

    Article  PubMed  CAS  Google Scholar 

  26. Nishiyama, A., Ishii, D. N., Backx, P. H., Pulford, B. E., Birks, B. R., and Tamkun, M. M. (2001). Am. J. Physiol. 281, H1800-H1807.

    CAS  Google Scholar 

  27. Takahashi, K., Ghatei, M. A., Lam, H. C., O'Halloran, D. J., and Bloom, S. R. (1990). Diabetologia 33, 306–310.

    Article  PubMed  CAS  Google Scholar 

  28. Hopfner, R. L., McNeill, J. R., and Gopalakrishnan, V. (1999). Eur. J. Pharmacol. 374, 221–227.

    Article  PubMed  CAS  Google Scholar 

  29. Evans, T., Deng, D. X., Chen, S., and Chakrabarti, S. (2000). Diabetes 49, 662–666.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, S., Evans, T., Deng, D., Cukiernik, M., and Chakrabarti, S. (2002). Nephron 90, 86–94.

    Article  PubMed  CAS  Google Scholar 

  31. Szokodi, I., Horkay, F., Merkely, B., et al. (1998). Cardiovasc. Res. 38, 356–364.

    Article  PubMed  CAS  Google Scholar 

  32. Gross, M. L., Heiss, N., Weckbach, M., et al. (2004). Diabetologia 47, 316–324.

    Article  PubMed  CAS  Google Scholar 

  33. Kahler, J., Mendel, S., Weckmuller, J., et al. (2000). J. Mol. Cell Cardiol. 32, 1429–1437.

    Article  PubMed  CAS  Google Scholar 

  34. Washizuka, T., Horie, M., Watanuki, M., and Sasayama, S. (1997). Circ. Res. 81, 211–218.

    PubMed  CAS  Google Scholar 

  35. Hagiwara, K., Nunoki, K., Ishii, K., Abe, T., and Yanagisawa, T. (2003). Biochem. Biophys. Res. Commun. 310, 634–640.

    Article  PubMed  CAS  Google Scholar 

  36. Ding, Y., Zou, R., Judd, R. L., and Zhong, J. (2006). Endocrine 29, 135–141.

    Article  PubMed  CAS  Google Scholar 

  37. Zhong, J., Hwang, T. C., Adams, H. R., and Rubin, L. J. (1997). Am. J. Physiol. 273, H2312-H2324.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juming Zhong DVM, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Zou, R., Judd, R.L. et al. Endothelin-1 receptor blockade prevented the electrophysiological dysfunction in cardiac myocytes of streptozotocin-induced diabetic rats. Endocr 30, 121–127 (2006). https://doi.org/10.1385/ENDO:30:1:121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:30:1:121

Key Words

Navigation