Skip to main content
Log in

Recycling processes of cellular ascorbate generate oxidative stress in pancreatic tissues in in vitro system

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Ascorbate is a reducing agent, which is also known to oxidize cellular compoentns. Our proposed mechanism of the oxidative action is as follows: Ascorbate is concentrated in the pancreas and is leaked in adverse conditions, and oxidized to dehydroascorbate. The dehydroascorbate is carried into cells by a glucose transporter (GLUT) and reduced back to ascorbate. The reduction processes take electrons from other cellular components. Ascorbate or dehydroascorbate treatment elevated thiobarbituric acid-reactive substance (TBARS) concentrations in pancreas. The elevation in TBARS concentrations were blocked by cytochalasin B, a GLUT inhibitor. To confirm further the prooxidative action, changes in glutathione content were quantified. Glutathione concentrations were lower in ascorbate- or dehydroascorbate-treated groups. The ascorbate-induced decrease in glutathione was blocked by cytochalasin B. To prevent oxidation of ascorbate to dehydroascorbate, glutathione was added to the medium. The ascorbate plus glutathione and dehydroascorbate plus glutathione groups showed lower TBARS concentrations than those of the ascorbate and dehydroascorbate groups, respectively. There were changes in the morphology of Langerhans islets following ascorbate treatment, which disappeared following treatment with ascorbate plus cyto-chalasin B. The observations indicate that ascorbate generates oxidative stress and affects the structure of islets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Si, F., Ross, G. M., and Shin, S. H. (1998). Exp. Brain Res. 123, 263–268.

    Article  PubMed  CAS  Google Scholar 

  2. Song, J. H., Shin, S. H., and Ross, G. M. (2001). Brain Res. 895, 66–72.

    Article  PubMed  CAS  Google Scholar 

  3. Song, J. H., Shin, S. H., Wang, W., and Ross, G. M. (2001). Exp. Neurol. 169, 425–437.

    Article  PubMed  CAS  Google Scholar 

  4. Horning, D. (1975). Ann. NY Acad. Sci. 258, 103–118.

    Article  Google Scholar 

  5. Skiz, E. and Guillemin, R. (1963). Endocrinology 72, 804–812.

    Article  Google Scholar 

  6. Cammack, J., Ghasemzadeh, B., and Adams, R. N. (1991). Brain Res. 565, 17–22.

    Article  PubMed  CAS  Google Scholar 

  7. Ngkeekwong, F. C. and Ng, L. L. (1998). Biochem. J. 324, 225–230.

    Google Scholar 

  8. Welch, R. W., Wang, Y. Jr., Crossman, A., Park, J. B., Kirk, K. L., and Levine, M. (1995). J. Biol. Chem. 270, 12,584–12,592.

    Article  CAS  Google Scholar 

  9. Vera, J. C., Rivas, C. I., Fischarg, J., and Golde, D. W. (1993). Nature 364, 79–82.

    Article  PubMed  CAS  Google Scholar 

  10. Bode, A. M., Yavarow, C. R., Fry, D. A., and Vargas, T. (1993). Biochem. Biophys. Res. Commun. 191, 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  11. May, J. M., Cobb, C. E., Mendiratta, S., Hill, K. E., and Burk, R. F. (1998). J. Biol. Chem. 273, 23,039–23,045.

    CAS  Google Scholar 

  12. Savini, I., D’Angelo, I., Annicchiarico-Petruzzelli, M., Bellincampi, L., Melino, G., and Avigliano, L. (1998). Anticancer Res. 18, 819–822.

    PubMed  CAS  Google Scholar 

  13. Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., and Yagi, K. (1994). J. Biol. Chem. 269, 13,685–13,688.

    CAS  Google Scholar 

  14. Will, J. C. and Byers, T. (1996). Natr. Rev. 54, 193–202.

    Article  CAS  Google Scholar 

  15. Jordan, C. D. (1992). N. Engl. J. Med. 327, 718–724.

    Article  Google Scholar 

  16. Spector, R. (1977). N. Engl. J. Med. 296, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  17. Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U. V., Chen, X. Z., Wang, Y., and Brubaker, R. F. (1999). Nature 399, 70–75.

    Article  PubMed  CAS  Google Scholar 

  18. Grunewald, R. A. and Fillenz, M. (1984). Neurochem. Int. 6, 491–500.

    Article  CAS  PubMed  Google Scholar 

  19. Miele, M., Boutelle, M. G., and Fillenz, M. (1994). Neuroscience 62, 87–91.

    Article  PubMed  CAS  Google Scholar 

  20. Rebec, G. V. and Pierce, R. C. (1994). Prog. Neurobiol. 43, 537–565.

    Article  PubMed  CAS  Google Scholar 

  21. Cardinale, G. L. and Udenfriend, S. (1974). Adv. Enzymol. 41, 245–300.

    PubMed  CAS  Google Scholar 

  22. Eyre, D. R. (1980). Science 207, 1315–1322.

    PubMed  CAS  Google Scholar 

  23. Wallerstein, R. O. and Wallerstein, R. O. Jr. (1976). Semin. Hematol. 13, 211–218.

    PubMed  CAS  Google Scholar 

  24. Murad, S., Grove, D., Lindberg, K. A., Reynolds, G., Sivarajah, A., and Pinnell, S. R. (1981). Proc. Natl. Acad. Sci. USA 78, 2879–2882.

    Article  PubMed  CAS  Google Scholar 

  25. Halliwell, B. and Gutteridge, J. M. (1997). J. Neurochem. 69, 1330,1331.

    Article  PubMed  CAS  Google Scholar 

  26. Winterbourn, C. C. (1995). Toxicol. Lett. 82/83, 969–974.

    Article  CAS  Google Scholar 

  27. Song, J. H., Harris, M. S., and Shin, S. H. (2001). Neurochem. Res. 26, 407–413.

    Article  PubMed  CAS  Google Scholar 

  28. Song, J. H., Shin, S. H., and Ross, G. M. (1999). J. Neurosci. Res. 58, 328–336.

    Article  PubMed  CAS  Google Scholar 

  29. Walker, J. K., Lawson, B. L., and Jennings, D. B. (1997). Respir. Physiol. 107, 241–250.

    Article  PubMed  CAS  Google Scholar 

  30. Rumsey, S. C., Daruwala, R., Al-Hasani, H., Zarnowski, M. J., Simpson, I. A., and Levine, M. (2000). J. Biol. Chem. 275, 28,246–28,253.

    CAS  Google Scholar 

  31. Ramasamy, R., Hwang, Y. C., Whang, J., and Bergmann, S. R. (2001). Am. J. Physiol. Heart Circ. Physiol. 281, H290-H297.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon H. Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, S., Georgatos, M., Reifel, C. et al. Recycling processes of cellular ascorbate generate oxidative stress in pancreatic tissues in in vitro system. Endocr 18, 91–96 (2002). https://doi.org/10.1385/ENDO:18:1:91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:18:1:91

Key Words

Navigation