Skip to main content

Free Radicals and Islet Function

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Pancreatic β-cells secrete insulin in response to changes in extracellular glucose concentration. However, persistent hyperglycemia during diabetes creates a redox imbalance resulting from overproduction of reactive oxygen species (ROS). Although a cell’s intracellular defense mechanism tries to cope with increased ROS levels, excess ROS impairs the integrity and physiological function of biomolecules and therefore affects viability and functionality of cells. This overproduction of ROS along with compromised antioxidant defenses leads to oxidative stress (OS). An organ’s intrinsic defense mechanism protects against this excess generation of ROS and therefore its susceptibility to (OS) is determined by its defense mechanism and ability to repair DNA damage caused by ROS. Islets have poor defense mechanisms and also are not capable of efficiently repairing oxidatively damaged DNA compared to other tissues. This explains the extraordinary sensitivity of islets to OS. In an attempt to strengthen their defense mechanisms, several strategies including oral administration of antioxidants and over-expression of genes responsible for antioxidant enzymes have proven to be successful. However, the reason for this low sensitivity of islets in comparison to other organs remains unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-OHdG:

8-Hydroxy-2-deoxyguanosine

AOEs:

Antioxidant enzymes

CAT:

Catalase

ETC:

Electron transport chain

GCL:

Glutamate-cysteine ligase

GPx:

Glutathione peroxidase

Grx:

Glutaredoxin

GSH:

Glutathione

GSIS:

Glucose-stimulated insulin secretion

H2O2 :

Hydrogen peroxide

HNE:

4-Hydroxy2-nonenal

JNK:

c-jun NH2-terminal kinase

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

NADPH:

Nicotinamide adenine dinucleotide phosphate

NK-κB:

Nuclear factor-κB

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2 •− :

Superoxide radical

OH•− :

Hydroxyl radical

OS:

Oxidative stress

p38MAPK:

p38 mitogen-activated kinase

PDX1:

Pancreatic and duodenal homeobox 1

Prx:

Peroxiredoxin

PTP:

Protein-tyrosine phosphatase

RNS:

Reactive nitrogen species

ROO :

Peroxyl radical

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid cycle

Trx:

Thioredoxin

UCP:

Uncoupling protein

ZDF rats:

Zucker diabetic fatty rats

ZLF rats:

Zucker lean fatty rats

References

  • Armann B, Hanson MS, Hatch E, Steffen A, Fernandez LA (2007) Quantification of basal and stimulated ROS levels as predictors of islet potency and function. Am J Transplant 7:38–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avanzo JL, Xavier de Mendonça Junior C, de Cerqueira Cesar M (2002) Role of antioxidant systems in induced nutritional pancreatic atrophy in chicken. Comp Biochem Physiol B Biochem Mol Biol 131(4):815–823

    PubMed  Google Scholar 

  • Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M (2003) Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-κB activation in insulin-producing cells. Diabetes 52:93–101

    CAS  PubMed  Google Scholar 

  • Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14(6):615–631

    CAS  PubMed  Google Scholar 

  • Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278(34):31950–31957

    CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    CAS  PubMed  Google Scholar 

  • Bhonde R, Shukla RC, Kanitkar M, Shukla R, Banerjee M, Datar S (2007) Isolated islets in diabetes research. Indian J Med Res 125(3):425–440

    CAS  PubMed  Google Scholar 

  • Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Roe MW, Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278(11):9796–9801

    CAS  PubMed  Google Scholar 

  • Bindoli A, Fukuto JM, Forman HJ (2008) Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10(9):1549–1564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    CAS  PubMed  Google Scholar 

  • Bretherton-Watt D, Gore N, Boam DS (1996) Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/amylin gene promoter. Biochem J 313(Pt 2):495–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53(9):1087–1097

    CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications. A unifying mechanism. Diabetes 54(6):1615–1625

    CAS  PubMed  Google Scholar 

  • Carty MD, Lillquist JS, Peshavaria M, Stein R, Soeller WC (1997) Identification of cis- and trans-active factors regulating human islet amyloid polypeptide gene expression in pancreatic beta-cells. J Biol Chem 272(18):11986–11993

    CAS  PubMed  Google Scholar 

  • Chan CB, De Leo D, Joseph JW, McQuaid TS, Ha XF, Xu F, Tsushima RG, Pennefathner PS, Salapatek AMF, Wheeler MB (2001) Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose stimulated insulin secretion – mechanism of action. Diabetes 50:1302–1310

    CAS  PubMed  Google Scholar 

  • Chen CY, Jang JH, Li MH, Surh YJ (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331(4):993–1000

    CAS  PubMed  Google Scholar 

  • Cornelius JG, Luttge BG, Peck AB (1993) Antioxidant enzyme activities in IDD-prone and IDD-resistant mice: a comparative study. Free Radic Biol Med 14(4):409–420

    CAS  PubMed  Google Scholar 

  • Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51(2):117–123

    CAS  PubMed  Google Scholar 

  • Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108

    CAS  PubMed  Google Scholar 

  • Diao J, Allister EM, Koshkin V, Lee SC, Bhattacharjee A, Tang C, Giacca A, Chan CB, Wheeler MB (2008) UCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival. Proc Natl Acad Sci 105:12057–12062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    CAS  PubMed  Google Scholar 

  • Dixit PP, Devasagayam TPA, Ghaskadbi S (2008) Formulated antidiabetic preparation Syndrex has a strong antioxidant properties. Eur J Pharmacol 581(1–2):216–225

    CAS  PubMed  Google Scholar 

  • Ebelt H, Peschke D, Bromme HJ, Morke W, Blume R, Peschke E (2000) Influence of melatonin on free radical-induced changes in rat pancreatic beta-cells in vitro. J Pineal Res 28:65–72

    CAS  PubMed  Google Scholar 

  • Eizirik DL, Pavlovic D (1997) Is there a role for nitric oxide in ß-cell dysfunction and damage in IDDM? Diabetes Metab Rev 13:293–308

    CAS  PubMed  Google Scholar 

  • Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    CAS  PubMed  Google Scholar 

  • Fedtke N, Boucheron JA, Walker VE, Swenberg JA (1990) Vinyl chloride-induced DNA adducts 2. Formation and persistence of 7-2-oxoethylguanine and n2, 3-ethenoguanine in rat-tissue DNA. Carcinogenesis 11(8):1287–1292

    CAS  PubMed  Google Scholar 

  • Fink BD, Hong YS, Mathahs MM, Scholz TD, Dillon JS, Sivitz WI (2002) UCP2 dependent proton leak in isolated mammalian mitochondria. J Biol Chem 277:3918–3925

    CAS  PubMed  Google Scholar 

  • Fisler JS, Warden CH (2006) Uncoupling proteins, dietary fat and the metabolic syndrome. Nutr Metab 3(38)

    Google Scholar 

  • Gimeno R, Dembski M, Weng X, Deng N, Shyjan A, Gimeno C, Iris F, Ellis S, Woolf E, Tartaglia L (1997) Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46:900–906

    CAS  PubMed  Google Scholar 

  • Gokkusu C, Palanduz S, Ademoglu E, Tamer S (2001) Oxidant and antioxidant systems in NIDDM patients: influence of vitamin E supplementation. Endocrinol Res 27(3):377–386

    CAS  Google Scholar 

  • Gorogawa S, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, Kawamori D, Yasuda T, Matsuhisa M, Yamasaki Y, Hori M (2002) Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract 57(1):1–10

    CAS  PubMed  Google Scholar 

  • Grankvist K, Marklund SL, Taljedal IB (1981) Cu-Zn superoxide dismuatse, Mn-superoxide dismuatse, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199(2):393–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Prato SD, Marchetti P (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54(3):727–735

    PubMed  Google Scholar 

  • Gurgul E, Lortz S, Tiedge M, Jörns A, Lenzen S (2004) Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes 53(9):2271–2280

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press Inc., New York

    Google Scholar 

  • Hellsten Y, Tullson PC, Richter EA, Bangsbo J (1997) Oxidation of urate in human skeletal muscle during exercise. Free Radic Biol Med 22(1–2):169–174

    CAS  PubMed  Google Scholar 

  • Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB (1998) Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. J Clin Invest 101(9):1811–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland AM, Hale MA, Kagami H, Hammer RE, MacDonald RJ (2002) Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci 99(19):12236–12241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    CAS  PubMed  Google Scholar 

  • Hong Y, Fink BD, Dillon JS, Sivitz WI (2001) Effects of adenoviral overexpression of uncoupling protein-2 and -3 on mitochondrial respiration in insulinoma cells. Endocrinology 142:249–256

    CAS  PubMed  Google Scholar 

  • Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, Miyazaki J (1998) Pancreatic β cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 188(8):1445–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    CAS  PubMed  Google Scholar 

  • Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, Messinger S, Kuroda Y, Berggren PO, Ricordi C (2005) A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant 5(7):1635–1645

    PubMed  Google Scholar 

  • Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y (1999) Hyperglycemia causes oxidative stress in pancreatic β-cells of GK rats, a model of type 2 diabetes. Diabetes 48(4):927–932

    CAS  PubMed  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609

    CAS  PubMed  Google Scholar 

  • Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48(12):2398–2406

    CAS  PubMed  Google Scholar 

  • Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277(33):30010–30018

    CAS  PubMed  Google Scholar 

  • Kanitkar M, Galande S, Bhonde R (2007) Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur J Pharmacol 577(1–3):183–191

    Google Scholar 

  • Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, Watada H, Leibiger IB, Yamasaki Y, Hori M (2003) Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 52(12):2896–2904

    CAS  PubMed  Google Scholar 

  • Kojima H, Nakamura T, Fujita Y, Kishi A, Fujimiya M, Yamada S, Kudo M, Nishio Y, Maegawa H, Haneda M, Yasuda H, Kojima I, Seno M, Wong NC, Kikkawa R, Kashiwagi A (2002) Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 5:1398–1408

    Google Scholar 

  • Kondo H, Mori S, Takino H, Kijima H, Yamasaki H, Ozaki M, Tetsuya I, Urata Y, Abe T, Sera Y, Yamakawa K, Kawasaki E, Yamaguchi Y, Kondo T, Eguchi K (2000) Attenuation of expression of gamma-glutamylcysteine synthetase by ribozyme transfection enhances insulin secretion by pancreatic beta cell line, MIN6. Biochem Biophys Res Commun 278:236–240

    CAS  PubMed  Google Scholar 

  • Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47(6):859–866

    CAS  PubMed  Google Scholar 

  • Krauss S, Zhang C-Y, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB (2003) Superoxide mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112:1831–1842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacy F, Gough DA, Schmid-Schönbein GW (1998) Role of xanthine oxidase in hydrogen peroxide production. Free Radic Biol Med 25:720–727

    CAS  PubMed  Google Scholar 

  • Lakey JR, Suarez-Pinzon WL, Strynadka K, Korbutt GS, Rajotte RV, Mabley JG, Szabo C, Rabinovitch A (2001) Peroxynitrite is a mediator of cytokine-induced destruction of human pancreatic islet β-cells. Lab Invest 81:1683–1692

    CAS  PubMed  Google Scholar 

  • Lee S, Lee H, Kim S, Lee IK, Song DK (2004) Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract 66:S69

    CAS  PubMed  Google Scholar 

  • Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Pénicaud L (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenzen S, Drinkgen J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20(3):463–466

    CAS  PubMed  Google Scholar 

  • Liu D, Pavlovic D, Flodström M, Sandler S, Eizirik DL (2000) Cytokines induce apoptosis in ß-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS−/−). Diabetes 49:1116–1122

    CAS  PubMed  Google Scholar 

  • Lortz S, Tiedge M (2003) Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells. Free Radic Biol Med 34(6):683–688

    CAS  PubMed  Google Scholar 

  • Lortz S, Tiedge M, Nachtwey T, Karlsen AE, Nerup J, Lenzen S (2000) Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through over-expression of antioxidant enzymes. Diabetes 49(7):1123–1130

    CAS  PubMed  Google Scholar 

  • Madsen OD (2007) Pancreas phylogeny and ontogeny in relation to a ‘pancreatic stem cell’. C R Biol 330(6–7):534–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahadev K, Zilbering A, Zhu L, Goldstein BJ (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in vivo and enhances the early insulin action cascade. J Biol Chem 276:21938–21942

    CAS  PubMed  Google Scholar 

  • Mao H, Schnetz-Boutaud NC, Weisenseel JP, Marnett LJ, Stone MP (1999) Duplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct. Proc Natl Acad Sci 96(12):6615–6620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    CAS  PubMed  Google Scholar 

  • Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399

    CAS  PubMed  Google Scholar 

  • Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279:37716–37725

    CAS  PubMed  Google Scholar 

  • Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53(4):1030–1037

    CAS  PubMed  Google Scholar 

  • Modak M, Parab P, Ghaskadbi S (2009) Pancreatic islets are very poor in rectifying oxidative DNA damage. Pancreas 38(1):23–29

    CAS  PubMed  Google Scholar 

  • Modak MA, Parab PB, Ghaskadbi SS (2011) Control of hyperglycemia significantly improves oxidative stress profile of pancreatic islets. Islets 3(5):234–240

    Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991). Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142

    Google Scholar 

  • Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Curi BR, Carpinelli AR (2009) Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology 150:2197–2201

    CAS  PubMed  Google Scholar 

  • Moriscot C, Pattou F, Kerr-Conte J, Richard MJ, Lemarchand P, Benhamou PY (2000) Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced Cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia 43(5):625–631

    CAS  PubMed  Google Scholar 

  • Moriscot C, Richard MJ, Favrot MC, Benhamou PY (2003) Protection of insulin-secreting INS-1 cells against oxidative stress through adenoviral-mediated glutathione peroxidase overexpression. Diabetes Metab 29(1):145–151

    CAS  PubMed  Google Scholar 

  • Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ, Johnson LE, Lepore DA, Walters SN, Stokes R, Chandra AP, O’Connell PJ, d’Apice AJ, Cowan PJ (2005) Overexpression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 54(7):2109–2116

    CAS  PubMed  Google Scholar 

  • Noguchi H, Kaneto H, Weir GC, Bonner-Weir S (2003) PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 52(7):1732–1737

    CAS  PubMed  Google Scholar 

  • Paolisso G, D’Amore A, Giugliano D, Ceriello A, Varricchio M, D’Onofrio F (1993) Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin dependent diabetic patients. Am J Clin Nutr 57:650–656

    CAS  PubMed  Google Scholar 

  • Patanè G, Piro S, Rabuazzo AM, Anello M, Vigneri R, Purrello F (2000) Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic β-cells. Diabetes 49:735–740

    PubMed  Google Scholar 

  • Petersen HV, Serup P, Leonard J, Michelsen BK, Madsen OD (1994) Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes. Proc Natl Acad Sci 91(22):10465–10469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    CAS  PubMed  Google Scholar 

  • Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough P, Tomlinson DR (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15(13):2508–2514

    CAS  PubMed  Google Scholar 

  • Qi D, Rodrigues B (2007) Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab 292(3):E654–E666

    CAS  PubMed  Google Scholar 

  • Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo over-oxidation of peroxiredoxins at their active site. J Biol Chem 277:19396–19401

    CAS  PubMed  Google Scholar 

  • Rahier J (1988) The diabetic pancreas: a pathologist’s view. In: Lefebvre PJ, Pipeleers DG (eds) The pathology of endocrine pancreas in diabetes. Springer, Berlin, pp 17–40

    Google Scholar 

  • Rashidi A, Kirkwood T, Shanley D (2009) Metabolic evolution suggests an explanation for the weakness of antioxidant defenses in beta-cells. Mech Ageing Dev 130(4):216–221

    CAS  PubMed  Google Scholar 

  • Reid MB, Li YP (2001) Cytokines and oxidative signalling in skeletal muscle. Acta Physiol Scand 171:225–232

    CAS  PubMed  Google Scholar 

  • Robertson RP, Harmon JS (2007) Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 581(19):3743–3748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson RP, Tanaka Y, Takahashi H, Tran PO, Harmon JS (2005) Prevention of oxidative stress by adenoviral overexpression of glutathione-related enzymes in pancreatic islets. Ann N Y Acad Sci 1043:513–520

    CAS  PubMed  Google Scholar 

  • Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E (2003) Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 300(1):216–222

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11(9):1105–1112

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Tran P, Harmon J, Robertson P (2002) A role for glutathione peroxidase in protecting pancreatic B-cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci 99(19):12363–12368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, Chan GNY, Wheeler MB, Giacca A (2007) Evidence for role of superoxide generation in glucose-induced β-cell dysfunction in vivo. Diabetes 56(11):2722–2731

    CAS  PubMed  Google Scholar 

  • Taniguchi H, Yamato E, Tashiro F, Ikegami H, Ogihara T, Miyazaki J (2003) Beta-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther 10(1):15–23

    CAS  PubMed  Google Scholar 

  • Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47(10):1578–1585

    CAS  PubMed  Google Scholar 

  • Todaro M, Di Gaudio F, Lavitrano M, Stassi G, Papaccio G (2003) Islet β-cell apoptosis triggered in vivo by interleukin-1β is not related to the inducible nitric oxide synthase pathway: evidence for mitochondrial function impairment and lipoperoxidation. Endocrinology 144:4264–4271

    CAS  PubMed  Google Scholar 

  • Tonooka N, Oseid E, Zhou H, Harmon JS, Robertson RP (2007) Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin Transplant 21(6):767–772

    PubMed  Google Scholar 

  • Tran PO, Parker SM, LeRoy E, Franklin CC, Kavanagh TJ, Zhang T, Zhou H, Vliet P, Oseid E, Harmon JS, Robertson RP (2004) Adenoviral over-expression of the glutamylcysteine ligase catalytic subunit protects pancreatic islets against oxidative stress. J Biol Chem 279(52):53988–53993

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  PubMed  Google Scholar 

  • Waeber G, Thompson N, Nicod P, Bonny C (1996) Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol 10(11):1327–1334

    CAS  PubMed  Google Scholar 

  • Wang M, Dhingra K, Hittelman WN, Liehr JG, de Andrade M, Li D (1996) Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol Biomarkers Prev 5(9):705–710

    CAS  PubMed  Google Scholar 

  • Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y (1996) The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 45(11):1478–1488

    CAS  PubMed  Google Scholar 

  • Weitzman SA, Turk PW, Milkowski DH, Kozlowski K (1994) Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci 91(4):1261–1264, 15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiersma P, Selman C, Speakman JR, Verhulst S (2004) Birds sacrifice oxidative protection for reproduction. Proc Biol Sci 271(5):S360–S363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu L, Nicholson W, Knobel SM, Steffner RJ, May JM et al (2004) Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines. J Biol Chem 279(13):12126–12134

    CAS  PubMed  Google Scholar 

  • Xiong FL, Sun XH, Gan L, Yang XL, Xu HB (2006) Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur J Pharmacol 529:1–7

    CAS  PubMed  Google Scholar 

  • Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine sulfinic acid. J Biol Chem 277:38029–38036

    CAS  PubMed  Google Scholar 

  • Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2(4):489–495

    CAS  PubMed  Google Scholar 

  • Zhang C-Y, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim Y-b (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction and type 2 diabetes. Cell 105:745–755

    CAS  PubMed  Google Scholar 

  • Zinker B, Rondinone C, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, Xie N, Wilcox D, Jacobson P, Frost L, Kroeger PE, Reilly RM, Koterski S, Opgenorth TJ, Ulrich RG, Crosby S, Butler M, Murray SF, McKay RA, Bhanot S, Monia BP, Jirousek MR (2002) PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci 99(17):11357–11362

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhankar Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Acharya, J., Ghaskadbi, S. (2014). Free Radicals and Islet Function. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_154

Download citation

Publish with us

Policies and ethics