Skip to main content
Log in

Sense and antisense

Therapeutic potential of oligonucleotides and interference RNA in asthma and allergic disorders

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Advances in our understanding of asthma pathogenesis and delineation of the human genome project are yielding novel candidate targets for therapeutic intervention. In parallel with target identification, the past decade has produced novel approaches to normalizing expression genes that are upregulated in disease processes. Single-stranded antisense oligonucleotides and double-stranded short-interfering RNA molecules, which specifically mark target transcripts for degradation, are being investigated for their ability to modulate disease processes. In both cases, the targets are RNA transcripts, and not protein; therefore, all types of molecular gene products can be inhibited, including historically undrugable species such as transcription factors and phosphatases. Various RNA interference strategies have been successfully tested in vitro and in animal models of disease, and data is beginning to accumulate from human clinical trials.

EPI-2010, a 21-mer phosphorothioate against the adenosine A1 receptor promoter region, has completed preclinical pharmacology testing and its initial clinical trials. The rationale for EPI-2010 is that overactivity of the adenosine signaling pathway in asthmatic lungs contributes to airway inflammation and hyperresponsiveness. Phase I/IIa clinical trials have shown EPI-2010 to be safe and well-tolerated, with modest indications of efficacy in patients with mild asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sears, M.R. (1995), J Invest Allergol Clin Immunol 5, 66–72.

    CAS  Google Scholar 

  2. http://www.aafa.org. Accessed on Oct. 28, 2004.

  3. Zimmermann, N., Moulton, E.A., Aronow, B.J., et al. (2002), J Allergy Clin Immunol 109(1 suppl), S296,905.

  4. Dove, A. (2002), Nature Biotech 20, 121–124.

    Article  CAS  Google Scholar 

  5. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998), Nature 391(6669), 806–811.

    Article  PubMed  CAS  Google Scholar 

  6. Eric, G. (2001), Current Biology 11, R772-R775.

    Article  Google Scholar 

  7. Nyce, J.W., and Metzger, W.J. (1997), Nature 385(6618), 721–725. Erratum in: (1997) Nature 390(6658), 424.

    Article  PubMed  CAS  Google Scholar 

  8. Kandimalla, E.R., Yu, D., and Agrawal, S. (2002), Curr Opin Mol Ther 4(2), 122–129.

    PubMed  CAS  Google Scholar 

  9. Karol, M.H. (1994), Eur Respir J 7(3), 555–568.

    Article  PubMed  CAS  Google Scholar 

  10. Zou, J., Young, S., Zhu, F., et al. (2002), Genome Biol. 3(5), research0020. Epub 2002 Apr 11.

  11. Agrawal, S. (1999), Biochim Biophys Acta 1489(1), 53–68.

    PubMed  CAS  Google Scholar 

  12. Levin, A.A. (1999), Biochim Biophys Acta 1489(1), 69–84.

    PubMed  CAS  Google Scholar 

  13. Cho-Chung, Y.S. (2002), Curr Opin Investig Drugs 3(6), 934–939.

    PubMed  CAS  Google Scholar 

  14. Tamm, I., Dorken, B., and Hartmann, G. (2001), Lancet 358(9280), 489–497.

    Article  PubMed  CAS  Google Scholar 

  15. de Smet, M.D., Meenken, C.J., and van den Horn, G.J. (1999), Ocul. Immunol. Inflamm. 7, 189–198.

    Article  PubMed  Google Scholar 

  16. Ali, S., Leonard, S.A., Kukoly, C.A., et al. (2001), Am J Respir Crit Care Med 163, 989–993.

    PubMed  CAS  Google Scholar 

  17. Nicklin, P.L., Bayley, D., Giddings, J., et al. (1998), Pharm Res 4, 583–591.

    Article  Google Scholar 

  18. Agrawal, S. (1999), Biochim Biophys Acta 1489, 53–68.

    PubMed  CAS  Google Scholar 

  19. Wang, H., Cai, Q., Zeng, X., Yu, D., et al. (1999), Proc Natl Acad Sci USA 96, 13,989–13,994.

    CAS  Google Scholar 

  20. Crooke, S.T. (1999), Antisense Nucleic Acid Drug Dev 8, 115–122.

    Google Scholar 

  21. Branch, A.D. (1996), Hepatology 24, 1517–1529.

    Article  PubMed  CAS  Google Scholar 

  22. Coulson, J.M., Poyner, D.R., Chabtry, A., et al. (1996), Mol Pharmacol 50, 314–325.

    PubMed  CAS  Google Scholar 

  23. Dapic, V., Bates, P.J., Trent, J.O., et al. (2002), Biochemistry 41(11), 3676–3685.

    Article  PubMed  CAS  Google Scholar 

  24. Finotto, S., De Sanctis, G.T., Lehr, H.A., et al. (2001), J Exp Med 193(11), 1247–1260.

    Article  PubMed  CAS  Google Scholar 

  25. Finotto, S., Buerke, M., Lingnau, K., et al. (2001), J Allergy Clin Immunol 107(2), 279–286.

    Article  PubMed  CAS  Google Scholar 

  26. Stenton, G.R., Kim, M.K., Noharo, O., et al. (2000), J Immunol 164(10), 5532.

    CAS  Google Scholar 

  27. Stenton, G.R., Ulanova, M., Dery, R.E., et al. (2002), J Immunol 169(2), 1028–1036.

    PubMed  CAS  Google Scholar 

  28. Allakhverdi, Z., Allam, M., and Renzi, P.M. (2002), Am J Respir Crit Care Med 165, 1015–1021.

    PubMed  Google Scholar 

  29. Nakanishi, A., Morita, S., Iwashita, H., et al. (2001), Proc Natl Acad Sci USA 98(9), 5175–5180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, H.A., Van Scott, M.R. & Robinson, C.B. Sense and antisense. Clinic Rev Allerg Immunol 27, 207–217 (2004). https://doi.org/10.1385/CRIAI:27:3:207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CRIAI:27:3:207

Index Entries

Navigation