Skip to main content
Log in

Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pollen tube growth is localized at the apex and displays oscillatory dynamics. It is thought that a balance between intracellular turgor pressure (hydrostatic pressure, reflected by the cell volume) and cell wall loosening is a critical factor driving pollen tube growth. We previously demonstrated that water flows freely into and out of the pollen tube apical region dependent on the extracellular osmotic potential, that cell volume changes reflect changes in the intracellular pressure, and that cell volume changes differentially induce, increases or decreases in specific phospholipid signals. This article shows that manipulation of the extracellular osmotic potential rapidly induces modulations in pollen tube growth rate frequencies, demonstrating that changes in the intracellular pressure are sufficient to reset the pollen tube growth oscillator. This indicates a direct link between intracellular hydrostatic pressure and pollen tube growth. Altering hydrodynamic flow through the pollen tube by replacing extracellular H2O with 2H2O adversely affects both cell volume and growth rate oscillations and induces aberrant morphologies. Normal growth and cell morphology are rescued by replacing 2H2O with H2O. Further studies revealed that the cell volume oscillates in the pollen tube apical region. These cell volume oscillations were not from changes in cell shape at the tip and were detectable up to 30 μm distal to the tip (the longest length measured). Cell volume in the apical region oscillates with the same frequency as growth rate oscillations but surprisingly the cycles are phase-shifted by 180°. Raman microscopy yields evidence that hydrodynamic flow out of the apex may be part of the biomechanics that drive cellular expansion. The combined results suggest that hydrodynamic loading/unloading in the apical region induces cell volume oscillations and has a role in driving cell elongation and pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zonia, L. and Munnik T. (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134, 813–823.

    Article  PubMed  CAS  Google Scholar 

  2. Holdaway-Clarke, T. L. and Hepler, P. K. (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol. 159, 539–563.

    Article  CAS  Google Scholar 

  3. Lhuissier, F. G. P., de Ruijter, N. C. A., Sieberer, B. J., et al. (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: state of the art. Ann. Bot. 87, 289–302.

    Article  CAS  Google Scholar 

  4. Palanivelu, R. and Preuss, D. (2000) Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol. 10, 517–524.

    Article  PubMed  CAS  Google Scholar 

  5. Messerli, M. A. and Robinson, K. R. (2003) Ionic and osmotic disruptions of the lily pollen tube oscillator: testing proposed models. Planta 217, 147–157.

    PubMed  CAS  Google Scholar 

  6. Higashiyama, T., Kuroiwa, H., Kawano, S. and Kuroiwa, T. (2000) Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol. 122 11–13.

    Article  PubMed  CAS  Google Scholar 

  7. Hutt, M. T. and Luttge, U. (2002). Nonlinear dynamics as a tool for modeling in plant physiology. Plant Biol. 4, 281–297.

    Article  Google Scholar 

  8. Parre, E. and Geitmann, A. (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220, 582–592.

    Article  PubMed  CAS  Google Scholar 

  9. Bosch, M., Cheung, A. Y. and Hepler, P. K. (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol. 138, 1334–1346.

    Article  PubMed  CAS  Google Scholar 

  10. Carpita, N. and Gibeaut, D. (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth. Plant J. 3, 1–30.

    Article  PubMed  CAS  Google Scholar 

  11. Geitmann, A. and Parre, E. (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex. Plant Reprod. 17, 9–16.

    Article  Google Scholar 

  12. Holdaway-Clarke, T. L., Weddle, N. M., Kim, S., et al. (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J. Exp. Bot. 54, 65–72.

    Article  PubMed  CAS  Google Scholar 

  13. Roy, S., Jauh, G. Y., Hepler, P. K. and Lord, E. M. (1998) Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta 204, 450–458.

    Article  PubMed  CAS  Google Scholar 

  14. Zonia L., Cordeiro, S., Tupy J. and Feijo J. A. (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell 14, 2233–2249.

    Article  PubMed  CAS  Google Scholar 

  15. Wei, C. and Lintilhac, P. M. (2003) Loss of stability—a new model for stress relaxation in plant cell walls. J. Theor. Biol. 224 305–312.

    Article  PubMed  CAS  Google Scholar 

  16. Cosgrove, D. J. (1986). Biophysical control of plant cell growth. Annu. Rev. Plant Physiol. 37, 377–405.

    Article  PubMed  CAS  Google Scholar 

  17. Benkert, R., Obermeyer, G. and Bentrup, F.-W. (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198, 1–8.

    Article  Google Scholar 

  18. Cardenas, L., Lovy-Wheeler, A., Wilsen, K. L. and Hepler, P. K. (2005) Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil. Cytoskel. 61, 112–127.

    Article  CAS  Google Scholar 

  19. Vervaeke, I., Delen, R., Wouters, J., et al. (2004) Semi in vivo pollen tube growth of Aechmea fasciata. Plant Cell Tissue Org. Cult. 76, 67–73.

    Article  Google Scholar 

  20. Lin, Y. and Yang, Z. (1997) Inhibition of pollen tube elongation by microinjected anti-Rop 1Ps antibodies suggests a crucial role for Rho-Type GTPases in the control of tip growth. Plant Cell 9, 1647–1659.

    Article  PubMed  CAS  Google Scholar 

  21. Pierson, E. S., Miller, D. D., Callaham, D. A., et al., (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev. Biol. 174, 160–173.

    Article  PubMed  CAS  Google Scholar 

  22. Malho R., Read, N. D., Trewavas, A. J. and Pais, M. S. (1995) Calcium-channel activity during pollen tube growth and reorientation. Plant Cell 7, 1173–1184.

    Article  PubMed  CAS  Google Scholar 

  23. Lazzaro, M. D., Donohue, J. M. and Soodavar, F. M. (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220, 201–207.

    Article  PubMed  CAS  Google Scholar 

  24. Vidali, L., McKenna, S. T. and Hepler, P. K. (2001) Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12, 2534–2545.

    PubMed  CAS  Google Scholar 

  25. Geitmann, A., Snowman, B. N., Emons, A. M. C. and Franklin-Tong, V. E. (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell 12, 1239–1251.

    Article  PubMed  CAS  Google Scholar 

  26. Anderhag, P., Hepler, P. K. and Lazzaro, M. D. (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214, 141–157.

    Article  Google Scholar 

  27. Monteiro D., Liu, Q. L., Lisboa, S., et al. (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]cyt and membrane secretion. J. Exp. Bot. 56, 1665–1674.

    Article  PubMed  CAS  Google Scholar 

  28. Xu, J., Brearley, C. A., Lin, W. H., et al. (2005) A role of Arabidopsis inositol polyphosphate kinase, AtIPK2 alpha, in pollen germination and root growth. Plant Physiol. 137, 94–103.

    Article  PubMed  CAS  Google Scholar 

  29. Hunt, L., Otterhag, L., Lee, J. C., et al. (2004) Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol. 162, 643–654.

    Article  CAS  Google Scholar 

  30. Gupta, R., Ting, J. T. L., Sokolov, L. N., et al. (2002) A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14, 2495–2507.

    Article  PubMed  CAS  Google Scholar 

  31. Kost, B., Lemichez, E., Spielhofer, P., et al. (1999). Rac homologs and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell. Biol. 145, 317–330.

    Article  PubMed  CAS  Google Scholar 

  32. Malho, R. (1998) Role of 1,4,5-inositol trisphosphate-induced Ca2+ release in pollen tube orientation. Sex. Plant Reprod. 11, 231–235.

    Article  CAS  Google Scholar 

  33. Franklin-Tong, V. E., Drøbak, B. K., Allan, A. C., et al. (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8, 1305–1321.

    Article  PubMed  CAS  Google Scholar 

  34. Zonia, L., and Munnik, T. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. In Biology of Inositols and Phosphoinositides (Majumder A. L. and Biswas B., eds.). Springer Dordrecht, 2000, pp. 205–236.

    Google Scholar 

  35. de Groot, B. L., and Grubmüller, H. (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357.

    Article  PubMed  Google Scholar 

  36. Borgnia, M., Nielsen, S., Engel, A., and Agre, P. (1999) Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68, 425–458.

    Article  PubMed  CAS  Google Scholar 

  37. Daniels, M. J., Chrispeels, M. J., and Yeager, M. (1999) Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography. J. Mol. Biol. 294, 1337–1349.

    Article  PubMed  CAS  Google Scholar 

  38. Niemietz, C. M. and Tyerman, S. D. (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiol. 115, 561–567.

    PubMed  CAS  Google Scholar 

  39. Charras, G. T., Yarrow, J. C., Horton, M. A., et al. (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369.

    Article  PubMed  CAS  Google Scholar 

  40. Mathur, J. (2006) Local interactions shape plant cells. Curr. Op. Cell Biol. 18, 40–46.

    Article  PubMed  CAS  Google Scholar 

  41. Lovy-Wheeler, A., Wilsen, K. L., Baskin, T. L. and Hepler, P. K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95–104.

    Article  PubMed  CAS  Google Scholar 

  42. Lancelle, S. A. and Hepler, P. K. (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167, 215–230.

    Article  Google Scholar 

  43. Duman, J. G., Lee, E., Lee, G. Y. et al. (2004) Membrane fusion correlates with surface charge in exocytic vesicles. Biochemistry 43, 7924–7939.

    Article  PubMed  CAS  Google Scholar 

  44. Morris, C. E., Wang, J. A., and Markin, B. S. (2003) The invagination of excess surface area by shrinking neurons. Biophys. J. 85, 223–235.

    Article  PubMed  CAS  Google Scholar 

  45. Kung, C. (2005) A possible unifying principle for mechanosensation. Nature 436, 647–654.

    Article  PubMed  CAS  Google Scholar 

  46. Martinac, B. (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460.

    Article  PubMed  CAS  Google Scholar 

  47. Mizuno, S. (2005) A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes. Am. J. Physiol. Cell Physiol. 288, C329-C337.

    Article  PubMed  CAS  Google Scholar 

  48. Yeung, C. H., Barfield, J. P., and Cooper, T. G. (2005) The role of anion channels and Ca2+ in addition to K+ channels in the physiological volume regulation of murine spermatozoa. Mol. Reprod. Dev. 71, 368–379.

    Article  PubMed  CAS  Google Scholar 

  49. Arniges, M., Vazquez, E., Fernandez-Fernandez, J. M., and Valverde, M. A. (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J. Biol. Chem. 279, 54062–54068.

    Article  PubMed  CAS  Google Scholar 

  50. Okada, Y., Maeno, E., Shimizu, T., et al., (2001) Receptormediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. Lond 532, 3–16.

    Article  PubMed  CAS  Google Scholar 

  51. Pasantes-Morales, H., Cardin, V., and Tuz, K. (2000) Signaling events during swelling and regulatory volume decrease. Neurochem. Res. 25, 1301–1314.

    Article  PubMed  CAS  Google Scholar 

  52. Chao, P. G., Tang, Z., Angelini, E., et al. (2005) Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J. Biomechanics 38, 1273–1281.

    Article  Google Scholar 

  53. Heidecker, M., Wener, L. H., Binder, K.-A. and Zimmerman, U. (2003) Turgor pressure changes trigger characteristic changes in the electrical conductance of the tonoplast and the plasmalemma of the marine alga Valonia utricularis. Plant Cell Environ. 26, 1035–1051.

    Article  Google Scholar 

  54. Shabala, S., Babourina, O., and Newman, I. (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J. Exp. Bot. 51, 1243–1253.

    Article  PubMed  CAS  Google Scholar 

  55. Okada, Y. (2004) Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem. Biophys. 41, 233–258.

    Article  PubMed  Google Scholar 

  56. Wehner, F., Olsen, H., Tinel, H., et al. (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 148, 1–80.

    Article  PubMed  CAS  Google Scholar 

  57. Dutta, R. and Robinson, K. R. (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 135, 1398–1406.

    Article  PubMed  CAS  Google Scholar 

  58. Mendgen K., Hahn, M., and Deising, H. (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 34, 367–386.

    Article  PubMed  CAS  Google Scholar 

  59. Money, N. P. and Howard, R. J. (1996) Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet. Biol. 20, 217–227.

    Article  Google Scholar 

  60. Talbot, N. J. (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol. 3, 9–16.

    Article  PubMed  CAS  Google Scholar 

  61. Money, N. P. Osmotic adjustment and the role of turgor in mycelial fungi. In: The Mycota, Vol. 1: Growth, Differentiation and Sexuality (Wessels, J. G. H. and Meinhardt, F., eds). Springer-Verlag, New York, 1994, pp. 67–81.

    Google Scholar 

  62. Money, N. P., Davis, C. M., and Ravishankar, J. P. (2004) Biomechanical evidence for convergent evolution of the invasive growth processes among fungi and oomycete water molds. Fungal Genet. Biol. 41, 872–876.

    Article  PubMed  Google Scholar 

  63. Franks, P. J. (2004) Stomatal control and hydraulic conductance, with special reference to tall trees. Tree Physiol. 24, 865–878.

    PubMed  Google Scholar 

  64. Schroeder, J. I., Allen, G. J., Hugouvieux, V., et al. (2001) Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658.

    Article  PubMed  CAS  Google Scholar 

  65. Liu, K. and Luan, S. (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10, 1957–1970.

    Article  PubMed  CAS  Google Scholar 

  66. Assmann, S. M. (1993) Signal transduction in guard cells. Annu. Rev. Cell Biol. 9, 345–375.

    Article  PubMed  CAS  Google Scholar 

  67. Schroeder, J. I. and Hedrich, R. (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem. Sci. 14, 187–192.

    Article  PubMed  CAS  Google Scholar 

  68. Suh, S., Moran, N., and Lee, Y. (2000) Blue light activates potassium efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol. 123, 833–843.

    Article  PubMed  CAS  Google Scholar 

  69. Kim, H. Y., Cote, G. G., and Crain, R. C. (1996) Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198, 279–287.

    Article  PubMed  CAS  Google Scholar 

  70. Antkowiak, B., Mayer, W. E., and Engelmann, W. (1991) Oscillations of the membrane-potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J. Exp. Bot. 42, 901–910.

    Article  Google Scholar 

  71. Satter, R. L., Morse, M. J., Lee, Y., et al. (1998) Light-and clock-controlled leaflet movements in Samanea saman: a physiological, biophysical and biochemical analysis. Bot. Acta 101, 205–213.

    Google Scholar 

  72. Siefritz, F., Otto, B., Bienert, G. P., et al. (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J. 37, 147–155

    PubMed  CAS  Google Scholar 

  73. Tyerman, S. D., Niemietz, C. M. and Bramley, H. (2002) Plant aquaporins: multifiunctional water and solute channels with expanding roles. Plant Cell Environ. 25, 173–194.

    Article  PubMed  CAS  Google Scholar 

  74. Siefritz, F., Biela, A., Eckert, M., et al. (2001) The tobacco plasma membrane aquaporin NtAQP1. J. Exp. Bot. 52, 1953–1957.

    Article  PubMed  CAS  Google Scholar 

  75. Ruiter, R. K., Vaneldik, G. J., Vanherpen, M. M. A., et al. (1997) Expression in anthers of two genes encoding Brassica oleracea transmembrane channel proteins. Plant Mol. Biol. 34, 163–168.

    Article  PubMed  CAS  Google Scholar 

  76. Lush, W. M., Grieser, F., and Wolters-Arts, M. (1998) Directional guidance of Nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol. 118, 733–741.

    Article  PubMed  CAS  Google Scholar 

  77. Wolters-Arts, M., Lush, W. M., and Mariani, C. (1998) Lipids are required for directional pollen-tube growth. Nature 392, 818–821.

    Article  PubMed  CAS  Google Scholar 

  78. Alves, A. A. C. and Setter, T. L. (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann. Bot. 94, 605–613.

    Article  PubMed  Google Scholar 

  79. Fricke, W. (2002) Biophysical limitation of cell elongation in cereal leaves. Ann. Bot. 90, 157–167.

    Article  PubMed  Google Scholar 

  80. Siefritz, F., Tyree, M. T., Lovisolo C., et al. (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects of function in plants. Plant Cell 14, 869–876.

    Article  PubMed  CAS  Google Scholar 

  81. Ikeda, T., Nonami, H., Fukuyama, T., and Hashimoto, Y. (1999) Hydraulic contribution in cell elongation of tissue-cultured plants: growth retardation induced by osmotic and temperature stresses and addition of 2,4-dichlorophenoxyacetic acid and benzylaminopurine. Plant Cell Environ. 22, 899–912.

    Article  CAS  Google Scholar 

  82. Matyssek, R., Maruyama, S., and Boyer, J. S. (1991) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ. 14, 917–923.

    Article  Google Scholar 

  83. Frixione, E., Ruiz, L., Cerbon, J., and Undeen, A. H. (1997) Germination of Nosema algerae (Microspora) spores: conditional inhibition by D2O, ethanol and Hg2+ suggests dependence of water influx upon membrane hydration and specific transmembrane pathways. J. Eukaryot. Microbiol. 44, 109–116.

    Article  PubMed  CAS  Google Scholar 

  84. Undeen, A. H. and Frixione, E. (1990) The role of osmotic pressure in the germination of Nosema algerae spores. J. Protozool. 37, 561–567.

    PubMed  CAS  Google Scholar 

  85. Lew, R. R., Levina, N. N., Walker, S. K., and Garrill, A. (2004) Turgor regulation in hyphal organisms. Fungal Genet. Biol. 41, 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  86. Money, N. P. (1997) Wishful thinking of turgor revisited: the mechanics of fungal growth. Fungal Genet. Biol. 21, 173–187.

    Article  Google Scholar 

  87. Harold, F. M., Harold, R. L., and Money, N. P. (1995) What forces drive cell-wall expansion. Can J. Bot. 73, S379-S383.

    Google Scholar 

  88. Harold, R. L., Money, N. P., and Harold, F. M. (1996) Growth and morphogenesis in Saprolegnia ferax: is turgor required? Protoplasma 191, 105–114.

    Article  Google Scholar 

  89. Money, N. P. (1995) Turgor pressure and the mechanics of fungal penetration. Can. J. Bot. 73, S96-S102.

    Google Scholar 

  90. Lew, R. R. (2005) Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiol. 151, 2685–2692.

    Article  CAS  Google Scholar 

  91. Nieuwland, J., Feron, R., Huisman, B. A. H., et al. (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell, 17, 2009–2019.

    Article  PubMed  CAS  Google Scholar 

  92. Cosgrove, D. J., Bedinger, P., and Durachko, D. M. (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. U. S. A. 94, 6559–6564.

    Article  PubMed  CAS  Google Scholar 

  93. Lord, E. M. (2003) Adhesion and guidance in compatible polination. J. Exp. Bot. 54, 47–54.

    Article  PubMed  CAS  Google Scholar 

  94. Shabala, S., Shabala, L., Gradmann, D., et al. (2006) Oscillations in plant membrane transport: model predictions experimental validation, and physiological implications. J. Exp. Bot. 57, 171–184

    Article  PubMed  CAS  Google Scholar 

  95. Gilden, D. L. (2001) Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56.

    Article  PubMed  CAS  Google Scholar 

  96. Agu, M. and Yamada, M. (1998) Short-time information entropy as a complexity measure. Jap. J. Applied. Phys. Part 2-Lett. 37, L1415-L1417.

    Article  CAS  Google Scholar 

  97. Gilden, D. L., Thronton, T., and Mallon, M. W. (1995) 1/f noise in human cognition. Science 267, 1837–1839.

    Article  PubMed  CAS  Google Scholar 

  98. Schrader, B., Klump, H. H., Schenzel, K., and Schulz, H. (1999) Non-destructive NIR FT Raman analysis of plants. J. Mol. Struct. 509, 201–212.

    Article  CAS  Google Scholar 

  99. Schrader, B. Infrared and Raman Spectroscopy. VCH Publishers, Weinheim, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Zonia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zonia, L., Müller, M. & Munnik, T. Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth. Cell Biochem Biophys 46, 209–232 (2006). https://doi.org/10.1385/CBB:46:3:209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:209

Index Entries

Navigation