Skip to main content
Log in

Biophysical studies on the differentiation of human CD14+ monocytes into dendritic cells

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs), which are the most efficient antigen-presenting cells (APCs) currently known, can be derived from CD14+ monocytes (DC predecessor cells) in vitro. Immature DCs actively take up antigens and pathogens, generate major histocompatability complex-peptide complexes, and migrate from the sites of antigen acquisition to secondary lymphoid organs to become mature dendritic cells that interact with and stimulate T-lymphocytes. During this process, the cells must undergo deformation to translocate through several barriers, including the basement membrane and interstitial connective tissue in the blood vessel wall. To further understand the mechanisms of the activation of immunological responses and the migration from peripheral tissue to secondary lymphoid organs, we have applied biophysical and microrheological methods to study the development processes of DCs in vitro. The results showed that membrane fluidity, osmotic fragility, membrane viscoelastic properties, infrared spectroscopy, and cytoskeleton organization of DCs exhibit significant differences in different developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinman, R. M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296.

    Article  PubMed  CAS  Google Scholar 

  2. Cella, M., Sallusto, F. and Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendriteic cells. Curr. Opin. Immunol, 9, 10–16.

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau, J., and Steinman, R. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  4. Austyn, J. M. (1996) New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  5. Winzler, C., Rovere, P., and Rescigno, M., et al. (1997) Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328.

    Article  PubMed  CAS  Google Scholar 

  6. Schuler-Thurner, B. (2001) Dendritic cells as vectors for therapy. Cell 106, 271–274.

    Article  PubMed  Google Scholar 

  7. Schuler, G., Schuler-Thurner, B., and Steinman, R. M. (2003) The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147.

    Article  PubMed  CAS  Google Scholar 

  8. Colino, J., and Snapper, C. M. (2003) Dendritic cells, new tools for vaccination. Microbes Infect. 5, 311–319.

    Article  PubMed  CAS  Google Scholar 

  9. Jefford, M., and Maraskovsky, E. (2001) The use of dendritic cells in cancer therapy. Lancet Oncol. 2, 343–353.

    Article  PubMed  CAS  Google Scholar 

  10. van Schooten, W. C., Strang, G., and Palathumpat, V. (1997) Biological properties of dendritic cells: implication to their use in treatment of cancer. Mol. Med. Today 6, 254–260.

    Google Scholar 

  11. Kelsall, B. L., and Rescigno, M. (2004) Mucosal dendritic cells in immunity and inflammation. Nat. Immunol. 5, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  12. Turley, S. J. (2002) Dendritic cells: inciting and inhibiting autoimmunity. Curr. Opin. Immunol. 14, 765–770.

    Article  PubMed  CAS  Google Scholar 

  13. Soruri, A., and Zwirner, J. (2005) Dendritic cells: limited potential in immunotherapy. Int. J. Biochem. Cell Biol. 37, 241–245.

    Article  PubMed  CAS  Google Scholar 

  14. Angénieux, C. (2001) Gene induction during differentiation of human monocytes into dendritic cells: an integrated study at the RNA and protein levels. Funct. Integr. Genomics 1, 323–329.

    Article  PubMed  Google Scholar 

  15. Rouzaut, A. (2000) Differential gene expression in the activation and maturation of human monocytes. Arch. Biochem. Biophys. 374, 153–200.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, A., and Gordon, J. R. (2002) Analysis of the gene expression profiles of immature versus mature bone marrow-derived dendritic cell using DNA arrays. Biochem. Biophys. Res. Commun. 290, 66–72.

    Article  PubMed  CAS  Google Scholar 

  17. de Baey, A., and Lanzavecchia, A. (2000) The role of aqua-porins in dendritic cells macropinocytosis. J. Exp. Med. 191, 743–748.

    Article  PubMed  Google Scholar 

  18. Shutt, D. C. (2000) Changes in motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil. Cytoskeleton 46, 200–221.

    Article  PubMed  CAS  Google Scholar 

  19. Beat, A., Imhof and Aurrand-Lions, M. (2004) Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 4, 432–444.

    Article  CAS  Google Scholar 

  20. Friedl, P., and Gunzer, M. (2001) Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22, 187–191.

    Article  PubMed  CAS  Google Scholar 

  21. Vicente-Manzanares, M., and Sánchez-Madrid, F. (2004) Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 4, 110–122.

    Article  PubMed  CAS  Google Scholar 

  22. Faure, S. (2004) ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol. 5, 272–279.

    Article  PubMed  CAS  Google Scholar 

  23. Chien, S., and Sung, K.-L.P. (1984) Effect of colchicine on viscoelastic properties of neutronphils. Biophys. J. 46, 383–386.

    PubMed  CAS  Google Scholar 

  24. Wen, Z. Y., Li, C. S., Zong, Y. Y., Lu, z. H., Sun, D. G., Yan, S., and Chien, S. (1998) An animal model to study erythrocyte senescence with a narrow time window: alterations in osmotic fragility and deformability of erythrocytes during their life span. Clin. Hemorheol. Microcirc. 18, 299–306.

    Google Scholar 

  25. Wang, J., Tang, Z. Y., Ka, W. B., Sun, D. G., Zeng, Z., and Wen, Z. Y. (2003) Rheological studies on the precursor cells at different stages. Clin. Hemorheol. Microcirc. 29, 63–69.

    PubMed  CAS  Google Scholar 

  26. Yao, W., Gu, L., Sung, D., Ka, W., Wen, Z., and Shu, C. (2003) Wild type p53 gene causes reorganization of cytoskeleton and therefore the impaired deformability and difficult migration of murine erythroleukemia cells. Cell Motil. Cytoskeleton 56, 1–12.

    Article  PubMed  CAS  Google Scholar 

  27. Yao, W., and Liang, Y. (2002) Changes of biophysical behavior of k562 cells for p16 gene transfer. Clin. Hemorheol. Microcirc. 27, 177–183.

    PubMed  CAS  Google Scholar 

  28. Li, G., Yuhui, J., Ying, W., et al. (2005) TFAR19 gene changesbiophysical behavior of murine erythroleukemia cells. Cell Biochem. Biophys. (in press).

  29. Lide, X., Yuhui, J., Weijuan, Y., et al. (2005) Studies on the biomechanical properties of maturing reticulocytes. J. Biomech. (in press).

  30. Kai, C., Dan, L., Weijuan, et al. (2004) Influence of TRAIL gene on biophysical properties of the human leukemic cell line Jurkat. Cell Res. 2, 161–168.

    Google Scholar 

  31. Berry, M. N., Edwards, A. M., and Barritt, G. J. (1991) Isolated Hepatocytes: Preparation, Properties and Application, in (Burdon, R. H., and Knippenberg, P. H., eds.), Elsevier, Amsterdam, pp. 18–58.

    Google Scholar 

  32. Azumi, M. (1962) Fluorescence assay in biology and medicine. J. Chem. Phys. 37, 2413–2420.

    Article  CAS  Google Scholar 

  33. Schimid-Schönbein, G. W., Sung, K.-L.P., Tözeren, H., Skalak, R., and Chien, S. (1981) Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256.

    Article  Google Scholar 

  34. Nathan, I. (1998) Alterations in membrane lipid dynamics of leukemic cells undergoing growth arrest and differentiation: dependency on the inducing agent. Exp. Cell. Res. 239, 442–446.

    Article  PubMed  CAS  Google Scholar 

  35. Lui, K. Z., Schultz, C. P., Mohammad, R. M., Al-Katib, A. M., Johnston, J. B., and Mantsch, H. H. (1998) Similarities between the sensitivity to 2-chlorodeoxyadenosine of lymphocytes from CLL patients and bryostain 1-treated WSUCLL cells: an infrared spectroscopic study. Cancer Lett. 127, 185–193.

    Article  Google Scholar 

  36. Gao, T. Y., Ci, Y. X., Jian, H. Y., and An, C. C. (2000) FTIR investigation of the interaction of tumor cells treated with caffeic acid and chlorogenic acid. Vib. Spectrosc. 24, 225–231.

    Article  CAS  Google Scholar 

  37. Le Gal, J., Morjani, H., and Manfait, M. (1993) Ultrastructural appraisal of the multidrug resistance in K562 and LR73 cell lines from Fourier transform infrared. Anticancer Res. 14, 1541–1548.

    Google Scholar 

  38. Le Gal, J., Morjani H., Fardel, O., Guillouzo, A., and Manfait, M. (1994) Conformational changes in membrane proteins of multidrug-resistant K562 and primary rat hepatocyte cultures as studied by Fourier transform infrared spectroscopy. Spectrosc. Cancer Res. 53, 3681–3686.

    Google Scholar 

  39. Tourkova, I. L., Yurkovetsky, Z. R., Shurin, M. R., and Shurin, G. V. (2001) Mechanisms of dendritic cell-induced T cell proliferation in the primary MLR assay. Immunol. Lett. 78, 75–82.

    Article  PubMed  CAS  Google Scholar 

  40. Dustin, M. L. (1998) Making a little affinity go a long way: a topological view of LFA-1 regulation. Cell Adhes. Commun. 6, 255–262.

    Article  PubMed  CAS  Google Scholar 

  41. Weiss, A. (1999) T-lymphocyte activation. In Fundamental Immunology (Paul, W. F., ed.), Lippincott-Raven, Philadelphia, pp. 411–447.

    Google Scholar 

  42. Dustin, M. L., and Cooper, J. A. (2000) The immunological synapse and the actin cytoskeleton: molecular hard-ware for T cell signaling. Nat. Immunol. 1, 23–29.

    Article  PubMed  CAS  Google Scholar 

  43. Gunzer, M., Friedl, P., Niggemann, B., Brocker, E. B., Kampgen, E., and Zanker, K. S. (2000) Migration of dendriteic cells in 3D-collagen lattices is dependent on tissue origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J. Leukoc. Biol. 67, 622–629.

    PubMed  CAS  Google Scholar 

  44. Wu, Z. Z., Zhang, G., Long, M., Wang, H. B., Song, G. B., and Cai, S. X. (2000) Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37, 279–290.

    PubMed  CAS  Google Scholar 

  45. Sung, K.-L.P., Sung, L. A., Crimmins, M., Burakoff, S. J., and Chien, S. (1988) Dynamic changes in viscoelastic properties in cytotoxic T-lymphocyte-mediated killing. J. Cell. Sci. 91, 179–189.

    PubMed  Google Scholar 

  46. Wang, J. (2002) Biophysical and biorheological studies on the precursor cell at different stages. Sci. China 45, 422–428.

    Google Scholar 

  47. Berg, J. S., Powell, B. C., and Cheney, R. E. (2001) A millennial myosin census. Mol. Biol. Cell. 12, 780–794.

    PubMed  CAS  Google Scholar 

  48. Reis Sousa, C. (2003) Regulation of dendritic cell function by microbial stimuli. Pathol. Biol. 51, 67–68.

    Article  CAS  Google Scholar 

  49. Lin, C. L., Suri, R. M., Rahdon, R. A., Austyn, J. M., and Roake, J. A. (1998) Dendritic cell chemotaxis and transcendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur. J. Immunol. 28, 4114–4122.

    Article  PubMed  CAS  Google Scholar 

  50. Gunn, M. D. (2003) Chemokine mediated control of dendritic cell migration and function. Semin. Immunol. 15, 271–276.

    Article  PubMed  CAS  Google Scholar 

  51. Sozzani, S., Sallusto, F. Luini, W. et al. (1995) Migration of dendritic cells in response to formyl peptides, c5a, and a distinct set of chemokines. J. Immunol. 155, 3292–3295.

    PubMed  CAS  Google Scholar 

  52. Ramesh, J., Salman, A., Hammody, Z., et al. (2001) Application of FTIR microscopy for the characterization of malignancy: H-ras tranfected murine fibroblasts as an example. J. Biochem. Biophys. Methods 50, 33–42.

    Article  PubMed  CAS  Google Scholar 

  53. Pollard, P. D., and Borisy, G. G. (2003) Cellular mobility driven by assembly and disassembly of actinic filaments. Cell 112, 453–465.

    Article  PubMed  CAS  Google Scholar 

  54. Steinman, R. M., and Dhodapkar, M. (2001) Active immunization against cancer with dendritic cells: the near future. Int. J. Cancer 94, 459–473.

    Article  PubMed  CAS  Google Scholar 

  55. Figdor, C. G., Jolanda I., and de Vries, M. (2004) Dendritic cell immunotherapy: mapping the way. Nat. Med. 10, 475–480.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyao Wen.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Liu, X., Jiang, Y. et al. Biophysical studies on the differentiation of human CD14+ monocytes into dendritic cells. Cell Biochem Biophys 45, 19–30 (2006). https://doi.org/10.1385/CBB:45:1:19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:19

Index Entries

Navigation