Skip to main content
Log in

SNARE complex regulation by phosphorylation

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

SNAREs (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors) are ubiquitous proteins that direct vesicular trafficking and exocytosis. In neurons, SNAREs act to mediate release of neurotransmitters, which is a carefully regulated process. Calcium influx has long been shown to be the key trigger of release. However, calcium alone cannot regulate the degree of vesicle content release. For example, only a limited number of docked vesicles releases neurotransmitters when calcium entry occurs; this suggests that exocytosis is regulated by other factors besides calcium influx. Regulation of the degree of release is best explained by looking at the many enzymatic proteins that interact with the SNARE complex. These proteins have been hypothesized to regulate the formation, stability, or disassembly of the SNARE complex and therefore may regulate neurotransmitter release. One group of enzymatic regulators is the protein kinases. These proteins phosphorylate sites on both SNARE proteins and proteins that interact with SNARE proteins. Recent research has identified some of the specific effects that phosphorylation (or dephosphorylation) at these sites can produce. Additionally, palmitoylation of SNAP-25, regulates the localization, and hence activity of this key SNARE protein. This review focuses on the location and effects of phosphorylation on SNARE regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, A., Barry, V. A., DasGupta, B. R. et al. (1996) N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223–20226.

    Article  PubMed  CAS  Google Scholar 

  2. Sutton, R. B., Fasshauer, D., Jahn, R. et al. (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353.

    Article  PubMed  CAS  Google Scholar 

  3. Weber, T., Zemelman, B. V., McNew, J. A. et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.

    Article  PubMed  CAS  Google Scholar 

  4. Jahn, R., Lang, T., and Sudhof, T. C. (2003) Membrane fusion. Cell 112, 519–533.

    Article  PubMed  CAS  Google Scholar 

  5. Sollner, T. H. (2003) Regulated exocytosis and SNARE function. Mol. Membr. Biol. 20, 209–220.

    Article  PubMed  CAS  Google Scholar 

  6. Sollner, T., Whitehart, S. W., Brunner, M. et al. (1993) Snap receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.

    Article  PubMed  CAS  Google Scholar 

  7. Sudhof, T. C. (2004) The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547.

    Article  PubMed  CAS  Google Scholar 

  8. Gerst, J. E. (2003) SNARE regulators: matchmakers and matchbreakers. Biochim. Biophys. Acta 1641, 99–110.

    Article  PubMed  CAS  Google Scholar 

  9. Pfeffer, S. R. (1999) Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1, E17-E22.

    Article  PubMed  CAS  Google Scholar 

  10. Jahn, R. (2004) Principles of exocytosis and membrane fusion. Ann. N. Y. Acad. Sci. 1014, 170–178.

    Article  PubMed  CAS  Google Scholar 

  11. Fasshauer, D., Sutton, R. B., Brunger, A. T., et al. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc. Natl. Acad. Sci. USA 95, 15781–15786.

    Article  PubMed  CAS  Google Scholar 

  12. Schiavo, G., Stenbeck, G., Rothman, J. E., et al. (1997) Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94, 997–1001.

    Article  PubMed  CAS  Google Scholar 

  13. Zhong, P. Y., Chen, Y. A., Tam, D., et al. (1997) An alphahelical minimal binding domain within the H3 domain of syntaxin is required for SNAP-25 binding. Biochemistry 36, 4317–4326.

    Article  PubMed  CAS  Google Scholar 

  14. Duman, J. G., and Forte, J.G. (2003) What is the role of SNARE proteins in membrane fusion? Am. J. Physiol. Cell Physiol. 285, C237-C249.

    PubMed  CAS  Google Scholar 

  15. Jeremic, A., Kelly, M., Cho, J. A., et al. (2004) Calcium drives fusion of SNARE-apposed bilayers. Cell Biol. Int. 28, 19–31.

    Article  PubMed  CAS  Google Scholar 

  16. Weimbs, T., Mostov, K., Low, S. H., et al. (1998) A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262.

    Article  PubMed  CAS  Google Scholar 

  17. Sorensen, J. B. and Nagy, G. (2005) the neuronal SNARE complex: Is it involved in vesicle priming or calcium-dependent fusion? Biophys. J., in press.

  18. Zhang, Y., Su, Z., Zhang, F., et al. (2005) A partially zipped SNARE complex stabilized by the membrane. J. Biol. Chem. 280, 15,595–15,600.

    CAS  Google Scholar 

  19. Veit, M., Sollner, T. H., and Rothman, J. E. (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. Febs Lett. 385, 119–123.

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalo, S., Greentree, W. K., and Linder, M. E. (1999) SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J. Biol. Chem. 274, 21313–21318.

    Article  PubMed  CAS  Google Scholar 

  21. Koticha, D. K., Huddleston, S. J., Witkin, J. W., et al. (1999) Role of the cysteine-rich domain of the t-SNARE component, SYNDET, in membrane binding and subcellular localization. J. Biol. Chem. 274, 9053–9060.

    Article  PubMed  CAS  Google Scholar 

  22. Washbourne, P., Cansino, V., Mathews, J. R., et al. (2001) Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem. J. 357, 625–634.

    Article  PubMed  CAS  Google Scholar 

  23. Loranger, S. S. and Linder, M. E. (2002) SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. J. Biol. Chem. 277, 34303–34309.

    Article  PubMed  CAS  Google Scholar 

  24. Cho, S. J., Kelly, M., Rognlien, K. T., et al. (2002) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys. J. 83, 2522–2527.

    Article  PubMed  CAS  Google Scholar 

  25. Han, X., Wang, C. T., Bai, J. H., et al. (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292.

    Article  PubMed  CAS  Google Scholar 

  26. Melia, T. J., Weber, T., McNew, J. A., et al. (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940.

    Article  PubMed  CAS  Google Scholar 

  27. Matos, M. F., Mukherjee, K., Chen, X., et al. (2003) Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells. Neuropharmacology 45, 777–786.

    Article  PubMed  CAS  Google Scholar 

  28. Tian, J. H., Das, S., and Sheng, Z. H. (2003) Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Mucn 18. J. Biol. Chem. 278, 26265–26274.

    Article  PubMed  CAS  Google Scholar 

  29. Bai, J. and Chapman, E. R. (2004) The C2 domains of synaptotagmin—partners in exocytosis. Trends Biochem. Sci. 29, 143–151.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi, M., Itakura, M., and Kataoka, M. (2003) New aspects of neurotransmitter release and exocytosis: regulation of neurotransmitter release by phosphorylation. J. Pharmacol. Sci. 93, 41–45.

    Article  PubMed  CAS  Google Scholar 

  31. Sasaki, Y. (2003) New aspects of neurotransmitter release and exocytosis: Rho-kinase-dependent myristoylated alanine-rich C-kinase substrate phosphorylation and regulation of neurofilament structure in neuronal cells. J. Pharmacol. Sci. 93, 35–40.

    Article  PubMed  CAS  Google Scholar 

  32. Evans, G. J., Morgan, A., and Burgoyne, R. D. (2003) Typing everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis. Traffic 4, 653–659.

    Article  PubMed  CAS  Google Scholar 

  33. Burgoyne, R. D. and Clague, M. J. (2003) Calcium and calmodulin in membrane fusion. Biochim. Biophys. Acta 1641, 137–143.

    Article  PubMed  CAS  Google Scholar 

  34. Martin, T. F. J. (2003) Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. Acta Molec. Cell Res. 1641, 157–165.

    Article  CAS  Google Scholar 

  35. Weinberger, A. and Gerst, J. E. (2004) Regulation of SNARE assembly by protein phosphorylation. Top. Curr. Genet. 10, 145–170.

    CAS  Google Scholar 

  36. Klenchin, V. A. and Martin, T. F. (2000) Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399–407.

    Article  PubMed  CAS  Google Scholar 

  37. Bracher, A. and Weissenhorn, W. (2004) Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei reveals conformational plasticity at its C-terminus. BMC Struct. Biol. 4, 6.

    Article  PubMed  Google Scholar 

  38. Parlati, F., Weber, T., McNew, J. A. et al. (1999) Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570.

    Article  PubMed  CAS  Google Scholar 

  39. Xu, T., Rammner, B., Margittai, M., et al. (1999) Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722.

    Article  PubMed  CAS  Google Scholar 

  40. Hua, S. Y. and Charlton, M. P. (1999) Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  41. Mahal, L. K., Sequeira, S. M., Gureasko, J. M., et al. (2002) Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol. 158, 273–282.

    Article  PubMed  CAS  Google Scholar 

  42. Coorssen, J. R., Blank, P. S., Tahara, M. et al. (1998) Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J. Biol. Chem. 143, 1845–1857.

    CAS  Google Scholar 

  43. Dulubova, I., Sugita, S., Hill, S. et al. (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382.

    Article  PubMed  CAS  Google Scholar 

  44. Carr, C. M., Grote, E., Munson, M. et al. (1999) Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344.

    Article  PubMed  CAS  Google Scholar 

  45. Bryant, N. J. and James, D. E. (2001) Vps45p stabilizes the syntaxin homologue Tlg2p and positively regulates SNARE complex formation. EMBO J. 20, 3380–3388.

    Article  PubMed  CAS  Google Scholar 

  46. Lerman, J. C., Robblee, J., Fairman, R., et al. (2000) Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470–8479.

    Article  PubMed  CAS  Google Scholar 

  47. Chapman, E. R., Hanson, P. I., An, S., et al. (1995) Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671.

    Article  PubMed  CAS  Google Scholar 

  48. Gerona, R. R., Larsen, E. C., Kowalchyk, J. A., et al. (2000) The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275, 6328–6336.

    Article  PubMed  CAS  Google Scholar 

  49. Earles, C. A., Bai, J., Wang, P., et al. (2001) The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell. Biol. 154, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  50. Tokuoka, H. and Goda, Y. (2003) Synaptotagmin in Ca2+-dependent exocytosis: dynamic action in a flash. Neuron 38, 521–524.

    Article  PubMed  CAS  Google Scholar 

  51. Hu, K., Carroll, J., Fedorovich, S., et al. (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650.

    Article  PubMed  CAS  Google Scholar 

  52. Tucker, W. C., Weber, T., and Chapman, E. R. (2004) Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 345–438.

    Article  CAS  Google Scholar 

  53. Chapman, E. R. (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3, 498–508.

    Article  PubMed  CAS  Google Scholar 

  54. Tolar, L. A. and Pallanck, L. (1998) NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J. Neurosci. 18, 10250–10256.

    PubMed  CAS  Google Scholar 

  55. Xu, T., Ashery, U., Burgoyne, R. D., et al. (1999) Early requirement for alpha-SNAP and NSF in the secretory cascade in chromaffin cells. EMBO J. 18, 3293–3304.

    Article  PubMed  CAS  Google Scholar 

  56. Matveeva, E. A., Whiteheart, S. W., Vanaman, T. C., et al. (2001) Phosphorylation of the N-ethylmaleimide-sensitive factor is associated with depolarization-dependent neurotransmitter release from synaptosomes. J. Biol. Chem. 276, 12174–12181.

    Article  PubMed  CAS  Google Scholar 

  57. Lonart, G., and Sudhof, T. C. (2000) Assembly of SNARE core complexes prior to neurotransmitter release sets the readily releasable pool of synaptic vesicles. J. Biol. Chem. 275, 27703–27707.

    PubMed  CAS  Google Scholar 

  58. Chheda, M. G., Ashery, U., Thakur, P., et al. (2001) Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat. Cell Biol. 3, 331–338.

    Article  PubMed  CAS  Google Scholar 

  59. Buxton, P., Zhang, X. M., Walsh, B., et al. (2003) Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Biochem. J. 375, 433–440.

    Article  PubMed  CAS  Google Scholar 

  60. Vites, O., Rhee, J. S., Schwarz, M., et al. (2004) Reinvestigation of the role of snapin in neurotransmitter release. J. Biol. Chem. 279, 26251–26256.

    Article  PubMed  CAS  Google Scholar 

  61. Chou, J. L., Huang, C. L., Lai, H. L., et al. (2004) Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein. J. Biol. Chem. 279, 46271–46279.

    Article  PubMed  CAS  Google Scholar 

  62. Calakos, N. and Scheller, R. H. (1994) Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 24534–24537.

    PubMed  CAS  Google Scholar 

  63. Valtorta, F., Pennuto, M., Bonanomi, D., et al. (2004) Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays 26, 445–453.

    Article  PubMed  CAS  Google Scholar 

  64. Bonanomi, D., Pennuto, M., Rigoni, M., et al. (2005) Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I with VAMP2. Mol. Pharmacol. 67, 1901–1908.

    Article  PubMed  CAS  Google Scholar 

  65. Becher, A., Drenckhahn, A., Pahner, I., et al. (1999) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. 19, 1922–1931.

    PubMed  CAS  Google Scholar 

  66. Edelmann, L., Hanson, P. I., Chapman, E. R., et al. (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 14, 224–231.

    PubMed  CAS  Google Scholar 

  67. McMahon, H. T., Bolshakov, V. Y., Janz, R., et al. (1996) Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. USA 93, 4760–4764.

    Article  PubMed  CAS  Google Scholar 

  68. Yin, Y., Dayanithi, G., and Lemos, J. R. (2002) Ca2+-regulated, neurosecretory granule channel involved in release from neurohypophysial terminals. J. Physiol. (Lond.) 539, 409–418.

    Article  CAS  Google Scholar 

  69. Li, Q., Lau, A., Morris, T. J., et al. (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 24, 4070–4081.

    Article  PubMed  CAS  Google Scholar 

  70. Harkins, A. B., Cahill, A. L., Powers, J. F., et al. (2004) Deletion of the synaptic protein interaction site of the N-type (Ca(v) 2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. Proc. Natl. Acad. Sci. USA 101, 15219–15224.

    Article  PubMed  CAS  Google Scholar 

  71. Fujita, Y., Sasaki, T., Fukui, K., et al. (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C. J. Biol. Chem. 271, 7265–7268.

    Article  PubMed  CAS  Google Scholar 

  72. Fu, J., Naren, A. P., Gao, X. P., et al. (2005) Protease-activated receptor-1 activation of endothelial cells induces protein kinase Ca-dependent phosphorylation of syntaxin 4 and Munc18c. J. Biol. Chem. 280, 3178–3184.

    Article  PubMed  CAS  Google Scholar 

  73. Shuang, R., Zhang, L., Fletcher, A., et al. (1998) Regulation of Munc-18/Syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J. Biol. Chem. 273, 4957–4966.

    Article  PubMed  CAS  Google Scholar 

  74. Fletcher, A., Shuang, R., Giovannucci, D. R., et al. (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J. Biol. Chem. 274, 4027–4035.

    Article  PubMed  CAS  Google Scholar 

  75. de Vries, K. J., Geijtenbeek, A., Brain, E. C., et al. (2000) Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur. J. Neurosci. 12, 385–390.

    Article  PubMed  Google Scholar 

  76. Imai, A., Nashida, T., and Shimomura, H. (2004) Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch. Biochem. Biophys. 422, 175–182.

    Article  PubMed  CAS  Google Scholar 

  77. Davletov, B., Sontag, J. M., Hata, Y., et al. (1993) Phosphorylation of Synaptotagmin I by casein kinase II. J. Biol. Chem. 268, 6816–6822.

    PubMed  CAS  Google Scholar 

  78. Hilfiker, S., Pieribone, V. A., Nordstedt, C., et al. (1999) Regulation of Synaptotagmin I phosphorylation by multiple protein kinases. J. Neurochem. 73, 921–932.

    Article  PubMed  CAS  Google Scholar 

  79. Verona, M., Zanotti, S., Schäfer, T., et al. (2000) Changes of Synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation. J. Neurochem. 74, 209–221.

    Article  PubMed  CAS  Google Scholar 

  80. Schaaf, C. P., Benzing, J., Schmitt, T., et al. (2004) Novel interaction partners of the TPR/MET tyrosine kinase. FASEB J. 19, 267–269.

    PubMed  Google Scholar 

  81. Thakur, P., Stevens, D. R., Sheng, Z. H., et al. (2004) Effects of PKA-mediated phosphorylation of Snapin on synaptic transmission in cultured hippocampal neurons. J. Neurosci. 24, 6476–6481.

    Article  PubMed  CAS  Google Scholar 

  82. Rubenstein, J. L., Greengard, P., and Czernik, A. J. (1993) Calcium-dependent serine phosphorylation of synaptophysin. Synapse 13, 161–172.

    Article  PubMed  CAS  Google Scholar 

  83. Chang, C. E., Gutierrez, L. M., Mundina-Weilenmann, C., et al. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits. J. Biol. Chem. 266, 16395–16400.

    PubMed  CAS  Google Scholar 

  84. Davare, M. A., Dong, F., Rubin, C. S., et al. (1999) The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J. Biol. Chem. 274, 30280–30287.

    Article  PubMed  CAS  Google Scholar 

  85. Cooper, C. B., Arnot, M. I., Feng, Z. P., et al. (2000) Crosstalk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. J. Biol. Chem. 275, 40777–40781.

    Article  PubMed  CAS  Google Scholar 

  86. Cooper, C. D., Solan, J. L., Dolejsi, M. K., et al. (2000) Analysis of connexin phosphorylation sites. Methods 20, 196–204.

    Article  PubMed  CAS  Google Scholar 

  87. Cook, K. K. and Fadool, D. A. (2002) Two adaptor proteins differentially modulate the phosphorylation and biophysics of Kv1.3 ion channel by SRC kinase. J. Biol. Chem. 277, 13268–13280.

    Article  PubMed  CAS  Google Scholar 

  88. Huang, Z. X. and Yao, K. T. (2004) [Mining gene expression microarray data of nasopharyngeal carcinoma by literature profiling]. Di Yi. Jun. Yi. Da. Xue. Xue. Bao 24, 798–801.

    PubMed  CAS  Google Scholar 

  89. Yokoyama, C. T., Sheng, Z. H., and Catterall, W. A. (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17, 6929–6938.

    PubMed  CAS  Google Scholar 

  90. Tomizawa, K., Ohta, J., Matsushita, M., et al. (2002) Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type volt-age-dependent calcium channel activity. J. Neurosci. 22, 2590–2597.

    PubMed  CAS  Google Scholar 

  91. Foletti, D. L., Lin, R., Finely, M. F. A., et al. (2000) Phosphorylated syntaxin 1 is localized to discrete domains along a subset of axons. J. Neurosci. 20, 4535–4544.

    PubMed  CAS  Google Scholar 

  92. Risinger, C. and Bennett, M. K. (1999) Differential phosphorylation of syntaxin and synaptosome associated protein of 25 kDa (SNAP-25) isoforms. J. Neurochem. 72, 614–624.

    Article  PubMed  CAS  Google Scholar 

  93. Dubois, T., Kerai, P., Learmonth, M., et al. (2002) Identification of syntaxin-1A sites of phosphorylation by casein kinase I and casein kinase II. Eur. J. Biochem. 269, 909–914.

    Article  PubMed  CAS  Google Scholar 

  94. Shimazaki, Y., Nishiki, T., Omori, A., et al. (1996) Phosphorylation of 25-kDa synaptosome-associated protein. J. Biol. Chem. 271, 14548–14553.

    Article  PubMed  CAS  Google Scholar 

  95. Genoud, S., Pralong, W., Riederer, B. M., et al. (2004) Activity-dependent phosphorylation of SNAP-25 in hippocampal organotypic cultures. J. Neurochem. 72, 1699–1706.

    Article  Google Scholar 

  96. Kataoka, M., Kuwahara, R., Iwasaki, S., et al. (2000) Nerve growth factor-induced phosphorylation of SNAP-25 in PC12 cells: a possible involvement in the regulation of SNAP-25 localization. J. Neurochem. 74, 2058–2066

    Article  PubMed  CAS  Google Scholar 

  97. Nagy, G., Matti, U., Nehring, R. B., et al. (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci. 22, 9278–9286.

    PubMed  CAS  Google Scholar 

  98. Nagy, G., Reim, K., Matti, U., et al. (2004) Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 14, 351–365.

    Google Scholar 

  99. Polgar, J., Lane, W. S., Chung, S. H., et al. (2003) Phosphorylation of SNAP-23 in activated human platelets. J. Biol. Chem. 278, 44369–44376.

    Article  PubMed  CAS  Google Scholar 

  100. Hepp, R., Puri, N., Hohenstein, A. C., et al. (2005) Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J. Biol. Chem. 280, 6610–6620.

    Article  PubMed  CAS  Google Scholar 

  101. Finley, M. F. A., Scheller, R. H., and Madison, D. V. (2003) SNAP-25 Ser187 does not mediate phorbol ester enhancement of hippocampal synaptic transmission. Neuropharmacology 45, 857–862.

    Article  PubMed  CAS  Google Scholar 

  102. Salinas, E., Ventura, J., Cordova, L. E., et al. (2004) Presence of SNAP-25 in rat mast cells. Immunol. Lett. 95, 105–108.

    Article  PubMed  CAS  Google Scholar 

  103. Woodbury, D. J. and Rognlien, K. (2000) The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes. Cell Biol. Int. 24, 809–818.

    Article  PubMed  CAS  Google Scholar 

  104. Rognlien, K. and Woodbury, D. J. (2003) Reconstituting SNARE proteins into BLMs, in Planar Lipid Bilayers (BLMs) and Their Application (Tien, H. T. and Ottova-Leitmannova, A., eds.), Elsevier Science, Amsterdam, pp. 479–488.

    Chapter  Google Scholar 

  105. McNally, J. M., Woodbury, D. J., and Lemos, J. R. (2004) Syntaxin 1A drives fusion of large dense-core neurosecretory granules into a planar lipid bilayer. Cell Biochem. Biophys. 41, 11–24.

    Article  PubMed  CAS  Google Scholar 

  106. Lane, S. R., and Liu, Y. C. (1997) Characterization of the palmitoylation domain of SNAP-25. J. Neurochem. 69, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  107. Gonelle-Gispert, C., Molinete, M., Halban, P. A., et al. (2000) Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J. Cell Sci. 113, 3197–3205.

    PubMed  CAS  Google Scholar 

  108. Kang, R. J., Swayze, R., Lise, M. F., et al. (2004) Presynaptic trafficking of synaptotagmin I is regulated by protein palmitoylation. J. Biol. Chem. 279, 50524–50536.

    Article  PubMed  CAS  Google Scholar 

  109. Salaun, C., James, D. J., and Chamberlain, L. H. (2004) Lipid rats and the regulation of exocytosis. Traffic 5, 255–264.

    Article  PubMed  Google Scholar 

  110. Salaun, C., Gould, G. W., and Chamberlain, L. H. (2005) The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells: regulation by distinct cysteine-rich domains. J. Biol. Chem. 280, 1236–1240.

    Article  PubMed  CAS  Google Scholar 

  111. Nielander, H. B., Onofri, F., Valtorta, F., et al. (1995) Phosphorylatin of VAMP/synaptobrevin in synaptic vesicle by endogenous protein kinases. J. Neurochem. 65, 1712–1720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dixon J. Woodbury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, D.A., Kelly, M.L. & Woodbury, D.J. SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45, 111–123 (2006). https://doi.org/10.1385/CBB:45:1:111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:1:111

Index Entries

Navigation