Skip to main content
Log in

Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K +o ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K +o ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K +o -dependent, and the suggestion has been made that pH and K +o may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K +o . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, P. B. and Begenisich, T. B. (1987) Catecholamines modulate the delayed rectifying potassium current (IK) in guinea pig ventricular myocytes. Pflugers Arch. 410, 217–219.

    Article  PubMed  CAS  Google Scholar 

  2. Apkon, M. and Nerbonne, J. M. (1988) a1-adrenergic agonists selectively suppress voltage-dependent K+ currents in rat ventricular myocytes. Proc. Natl. Acad. Sci. U. S. A. 85, 8756–8760.

    Article  PubMed  CAS  Google Scholar 

  3. Fedida, D., Shimoni, Y., and Giles, W. R. (1990) a-Adrenergic modulation of the transient outward current in rabbit atrial myocytes. J. Physiol. 423, 257–277.

    PubMed  CAS  Google Scholar 

  4. Parker, C. and Fedida, D. (1999) Adrenergic and cholinergic regulation of cardiac K+ channels, in Potassium Channels in Cardiovascular Biology (Archer, S. A. and Rusch, N. J., eds.), Amsterdam: Kluwer.

    Google Scholar 

  5. Zipes, D. P. (1992) Genesis of cardiac arrhythmias: electrophysiological considerations, in Heart Disease, A Textbook of Cardiovascular Medicine (Braunwald, E., ed.), Philadelphia: W. B. Saunders Co.; pp. 588–627.

    Google Scholar 

  6. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A. L., Gulbis, J. M., Cohen, S. L., et al. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou, Y. F., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R. (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 angstrom resolution. Nature 414, 43–48.

    Article  PubMed  CAS  Google Scholar 

  8. Abraham, M. R., Jahangir, A., Alekseev, A. E., and Terzic, A. (1999) Channelopathies of inwardly rectifying potassium channels. FASEB J. 13, 1901–1910.

    PubMed  CAS  Google Scholar 

  9. Patel, A. J. and Honoré, E. (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 24, 339–346.

    Article  PubMed  CAS  Google Scholar 

  10. Choe, S. (2002) Potassium channel structures. Nat. Rev. Neurosci. 3, 115–121.

    Article  PubMed  CAS  Google Scholar 

  11. Fedida, D., Wible, B., Wang, Z., Fermini, B., Faust, F., Nattel, S., et al. (1993) Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ. Res. 73, 210–216.

    PubMed  CAS  Google Scholar 

  12. Feng, J. L., Wible, B., Li G. R., Wang, Z. G., and Nattel, S. (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ. Res. 80, 572–579.

    PubMed  CAS  Google Scholar 

  13. Van Wagoner, D. R. (2000) Pharmacologic relevance of K+ channel remodeling in atrial fibrillation. J. Mol. Cell. Cardiol. 32, 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  14. Fedida, D., Eldstrom, J., Hesketh, J. C., Lamorgese, M., Castel, L., Steele, D. F., et al. (2003) Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ. Res. 93, 744–751.

    Article  PubMed  CAS  Google Scholar 

  15. Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S., and Nerbonne, J. M. (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res. 80, 772–781.

    PubMed  Google Scholar 

  16. Van Wagoner, D. R. (2003) Electrophysiological remodeling in human atrial fibrillation. Pacing Clin. Electrophysiol. 26, 1572–1575.

    Article  PubMed  Google Scholar 

  17. Brundel, B. J., Van Gelder, I. C., Henning, R. H., Tuinenburg, A. E., Wietses, M., Grandjean, J. G., et al. (2001) Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J. Am. Coll. Cardiol. 37, 926–932.

    Article  PubMed  CAS  Google Scholar 

  18. Grammer, J. B., Bosch, R. F., Kuhlkamp, V., and Seipel, L. (2000) Molecular remodeling of Kv4.3 potassium channels in human atrial fibrillation. J. Cardiovasc. Electrophysiol. 11, 626–633.

    Article  PubMed  CAS  Google Scholar 

  19. Kääb, S., Dixon, J., Duc, J., Ashen, D., Näbauer, M., Beuckelmann, D. J., et al. (1998) Molecular basis of transiet outward potassium current downregulation in human heart failure—a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98, 1383–1393.

    PubMed  Google Scholar 

  20. Takimoto, K., Li, D. Q., Hershman, K. M., Li, P., Jackson, E. K., and Levitan, E. S. (1997) Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats. Circ. Res. 81, 533–539.

    PubMed  CAS  Google Scholar 

  21. Wakisaka, Y., Niwano, S., Niwano, H., Saito, J., Yoshida, T., Hirasawa, S., et al. (2004) Structural and electrical ventricular remodeling in rat acute myocarditis and subsequent heart failure. Cardiovasc. Res. 63, 689–699.

    Article  PubMed  CAS  Google Scholar 

  22. Gidh-Jain, M., Huang, B., Jain, P., and El-Sherif, N. (1996) Differential expression of voltagegated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ. Res. 79, 669–675.

    PubMed  CAS  Google Scholar 

  23. Gidh-Jain, M., Huang, B., Jain, P., Gick, G., and El Sherif, N. (1998) Alterations in cardiac gene expression during ventricular remodeling following experimental myocardial infarction. J. Mol. Cell Cardiol. 30, 627–637.

    Article  PubMed  CAS  Google Scholar 

  24. Takimoto, K. and Levitan, E. S. (1994) Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart. Circ. Res. 75, 1006–1013.

    PubMed  CAS  Google Scholar 

  25. Takimoto, K. and Levitan, E. S. (1996) Altered K+ channel subunit composition following hormone induction of Kv1.5 gene expression. Biochemistry 35, 14149–14156.

    Article  PubMed  CAS  Google Scholar 

  26. Song, M., Helguera, G., Eghbali, M., Zhu, N., Zarei, M. M., Olcese, R., et al. (2001) Remodeling of Kv4.3 potassium channel gene expression under the control of sex hormones. J. Biol. Chem. 276, 31883–31890.

    Article  PubMed  CAS  Google Scholar 

  27. Levitan, E. S., Hershman, K. M., Sherman, T. G., and Takimoto, K. (1996) Dexamethasone and stress upregulate Kv1.5 K+ channel gene expression in rat ventricular myocytes. Neuropharmacology 35, 1001–1006.

    Article  PubMed  CAS  Google Scholar 

  28. Shimoni, Y., Severson, D., and Giles, W. R. (1995) Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J. Physiol. 488, 673–688.

    PubMed  CAS  Google Scholar 

  29. Shimoni, Y., Fiset, C., Clark, R. B., Dixon, J. E., McKinnon, D., Giles, and W. R. (1997) Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J. Physiol. 500, 65–73.

    PubMed  CAS  Google Scholar 

  30. Wickenden, A. D., Kaprielian, R., Parker, T. G., Jones, O. T., and Backx, P. H. (1997) Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle. J. Physiol. 504, 271–286.

    Article  PubMed  CAS  Google Scholar 

  31. Wickenden, A. D., Kaprielian, R., You, X. M., and Backx, P. H. (2000) The thyroid hormone analog DITPA restores I(to) in rats after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 278, H1105-H1116.

    PubMed  CAS  Google Scholar 

  32. Ojamaa, K., Kenessey, A., Shenoy, R., and Klein, I. (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am. J. Physiol. Endocrinol. Metab. 279, E1319-E1324.

    PubMed  CAS  Google Scholar 

  33. Steidl, J. V. and Yool, A. J. (1999) Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor. Mol. Pharmacol. 55, 812–820.

    PubMed  CAS  Google Scholar 

  34. Kehl, S. J., Eduljee, C., Kwan, D. C. H., Zhang, S., and Fedida, D. (2002) Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn2+. J. Physiol. 541, 9–24.

    Article  PubMed  CAS  Google Scholar 

  35. Jäger, H. and Grissmer, S. (2001) Regulation of mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH. FEBS Lett. 488, 45–50.

    Article  PubMed  Google Scholar 

  36. Perez-Cornejo, P., Stampe, P., and Begenisich, T. (1998) Proton probing of the charybdotoxin binding site of Shaker K+ channels. J. Gen. Physiol. 111, 441–450.

    Article  PubMed  CAS  Google Scholar 

  37. Claydon, T. W., Boyett, M. R., Sivaprasadarao, A., Ishii, K., Owen, J. M., O'Beirne, H. A., et al. (2000) Inhibition of the K+ channel Kv1.4 by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J. Physiol. 526, 253–264.

    Article  PubMed  CAS  Google Scholar 

  38. Ishii, K., Nunoki, K., Yamagishi, T., Okada, H., and Taira, N. (2001) Differential sensitivity of Kv1.4, Kv1.2, and their tandem channel to acidic pH: Involvement of a histidine residue in high sensitivity to acidic pH. J. Pharmacol. Exp. Ther. 296, 405–411.

    PubMed  CAS  Google Scholar 

  39. Pardo, L. A., Heinemann, S. H., Terlau, H., Ludewig, U., Lorra, C., Pongs, O., et al. (1992) Extracellular K+ specifically modulates a rat brain K+ channel. Proc. Natl. Acad. Sci. U. S. A. 89, 2466–2470.

    Article  PubMed  CAS  Google Scholar 

  40. Casteels, K. and Mathieu, C. (2003) Diabetic ketoacidosis. Rev. Endocr. Metab. Disord. 4, 159–166.

    Article  PubMed  Google Scholar 

  41. Jäger, H., Rauer, H., Nguyen, A. N., Aiyar, J., Chandy, K. G., and Grissmer, S. (1998) Regulation of mammalian Shaker-related K+ channels: evidence for non-conducting closed and non-conducting inactivated states. J. Physiol. 506, 291–301.

    Article  PubMed  Google Scholar 

  42. Lopez-Barneo, J., Hoshi, T., Heinemann, S. H., and Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept. Channels 1, 61–71.

    PubMed  CAS  Google Scholar 

  43. Starkus, J. G., Varga, Z., Schonherr, R., and Heinemann, S. H. (2003) Mechanisms of the inhibition of Shaker potassium channels by protons. Pflugers Arch. 447, 44–54.

    Article  PubMed  CAS  Google Scholar 

  44. Guo, W. N., Li, H. L., Aimond, F., Johns, D. C., Rhodes, K. J., Trimmer, J. S., et al. (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ. Res. 90, 586–593.

    Article  PubMed  CAS  Google Scholar 

  45. Eghbali, M., Olcese, R., Zarei, M. M., Toro, L., and Stefani, E. (2002) External pore collapse as an inactivation mechanism for Kv4.3 K+ channels. J. Membrane Biol. 188, 73–86.

    Article  CAS  Google Scholar 

  46. Jiang, Y. X., Lee, A., Chen, J. Y., Ruta, V., Cadene, M., Chait, B. T., et al. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang, Y. X., Ruta, V., Chen, J. Y., Lee, A., and MacKinnon, R. (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48.

    Article  PubMed  CAS  Google Scholar 

  48. Gandhi, C. S., Clark, E., Loots, E., Pralle, A., and Isacoff, E. Y. (2003) The orientation and molecular movement of a k(+) channel voltage-sensing domain. Neuron 40, 515–525.

    Article  PubMed  CAS  Google Scholar 

  49. Lee, H. C., Wang, J. M., and Swartz, K. J. (2003) Interaction between extracellular Hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40, 527–536.

    Article  PubMed  CAS  Google Scholar 

  50. Ahern, C. A. and Horn, R. (2004) Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123, 205–216.

    Article  PubMed  CAS  Google Scholar 

  51. Horn, R. (2004) How S4 segments move charge. Let me count the ways. J. Gen. Physiol. 123, 1–4.

    Article  PubMed  Google Scholar 

  52. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N., and Jan, L. Y. (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775.

    Article  PubMed  CAS  Google Scholar 

  53. MacKinnon, R., Aldrich, R. W., and Lee, A. W. (1993) Functional stoichiometry of Shaker potassium channel inactivation. Science 262, 757–759.

    Article  PubMed  CAS  Google Scholar 

  54. Antz, C., Bauer, T., Kalbacher, H., Frank, R., Covarrubias, M., Kalbitzer, H. R., et al. (1999) Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat. Struct. Biol. 6, 146–150.

    Article  PubMed  CAS  Google Scholar 

  55. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1991) Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxyterminal region. Neuron 7, 547–556.

    Article  PubMed  CAS  Google Scholar 

  56. Baukrowitz, T. and Yellen, G. (1995) Modulation of K+ current by frequency and external [K+]: A tale of two inactivation mechanisms. Neuron 15, 951–960.

    Article  PubMed  CAS  Google Scholar 

  57. Choi, K. L., Aldrich, R. W., and Yellen, G. (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl. Acad. Sci. U. S. A. 88, 5092–5095.

    Article  PubMed  CAS  Google Scholar 

  58. Ogielska, E. M., Zagotta, W. N., Hoshi, T., Heinemann, S. H., Haab, J., and Aldrich, R. W. (1995) Cooperative subunit interactions in C-type inactivation of K channels. Biophys. J. 69, 2449–2457.

    PubMed  CAS  Google Scholar 

  59. Panyi G., Sheng Z., Tu L., and Deutsch C. (1995) C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys. J. 69, 896–903.

    PubMed  CAS  Google Scholar 

  60. Starkus, J. G., Kuschel, L., Rayner, M. D., and Heinemann, S. H. (1997) Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550.

    Article  PubMed  CAS  Google Scholar 

  61. Starkus, J. G., Kuschel, L., Rayner, M. D., and Heinemann, S. H. (1998) Macroscopic Na+ currents in the “nonconducting” Shaker potassium channel mutant W434F. J. Gen. Physiol. 112, 85–93.

    Article  PubMed  CAS  Google Scholar 

  62. DeBiasi, M., Hartmann, H. A., Drewe, J. A., Taglialatela, M., Brown, A. M., and Kirsch, G. E. (1993) Inactivation determined by a single site in K+ pores. Pflugers Arch. 422, 354–363.

    Article  CAS  Google Scholar 

  63. Olcese, R., Latorre, R., Toro, L., Bezanilla, F., and Stefani, E. (1997) Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J. Gen. Physiol. 110, 579–589.

    Article  PubMed  CAS  Google Scholar 

  64. Yang, Y. S., Yan, Y. Y., and Sigworth, F. J. (1997) How does the W434F mutation block current in Shaker potassium channels. J. Gen. Physiol. 109, 779–789.

    Article  PubMed  CAS  Google Scholar 

  65. Kiss, L., LoTurco, J., and Korn, S. J. (1999) Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263.

    PubMed  CAS  Google Scholar 

  66. Loots, E. and Isacoff, E. Y. (2000) Molecular coupling of S4 to a K+ channel's slow inactivation gate. J. Gen. Physiol. 116, 623–635.

    Article  PubMed  CAS  Google Scholar 

  67. Wang, Z. and Fedida, D. (2001) Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel. Biophys. J. 81, 2614–2627.

    PubMed  CAS  Google Scholar 

  68. Klemic, K. G., Shieh, C. C., Kirsch, G. E., and Jones SW (1998) Inactivation of Kv2.1 potassium channels. Biophys. J. 74, 1779–1789.

    PubMed  CAS  Google Scholar 

  69. Klemic, K. G., Kirsch, G. E., and Jones, S. W. (2001) U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys. J. 81, 814–826.

    PubMed  CAS  Google Scholar 

  70. Kurata, H. T., Soon, G. S., and Fedida, D. (2001) Altered state dependence of C-type inactivation in the long and short forms of human Kv1.5. J. Gen. Physiol. 118, 315–332.

    Article  PubMed  CAS  Google Scholar 

  71. Patil, P. G., Brody, D. L., and Yue, D. T. (1998) Preferential closed-state inactivation of neuronal calcium channels. Neuron 20, 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  72. Larsson, H. P. and Elinder, F. (2000) A conserved glutamate is important for slow inactivation in K+ channels. Neuron 27, 573–583.

    Article  PubMed  CAS  Google Scholar 

  73. Ortega-Saenz, P., Pardal, R., Castellano, A., and Lopez-Barneo, J. (2000) Collapse of conductance is prevented by a glutamate residue conserved in voltage-dependent K(+) channels. J. Gen. Physiol. 116, 181–190.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, Z. R., Hesketh, J. C., and Fedida, D. (2000) A high-Na+ conduction state during recovery from inactivation in the K+ channel Kv1.5. Biophys. J. 79, 2416–2433.

    Article  PubMed  CAS  Google Scholar 

  75. Chen, F. S. P., Steele, D., and Fedida, D. (1997) Allosteric effects of permeating cations on gating currents during K+ channel deactivation. J. Gen. Physiol. 110, 87–100.

    Article  PubMed  Google Scholar 

  76. Loots, E. and Isacoff, E. Y. (1998) Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J. Gen. Physiol. 112, 377–389.

    Article  PubMed  CAS  Google Scholar 

  77. Andalib, P., Consiglio, J. F., Trapani, J. G., and Korn, S. J. (2004) The external TEA binding site and C-type inactivation in voltage-gated potassium channels. Biophys. J. 87, 3148–3161.

    Article  PubMed  CAS  Google Scholar 

  78. Molina, A., Castellano, A. G., and Lopez-Barneo, J. (1997) Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation. J. Physiol. 499, 361–367.

    PubMed  CAS  Google Scholar 

  79. Zhang, S., Kurata, H. T., Kehl, S. J., and Fedida, D. (2003) Rapid induction of P/C-type inactivation is the mechanism for acid-induced K+ current inhibition. J. Gen. Physiol. 121, 215–225.

    Article  PubMed  CAS  Google Scholar 

  80. MacKinnon, R. and Yellen, G. (1990) Mutations affecting TEA blockade and ion permeation in voltage- activated K+ channels. Science 250, 276–279.

    Article  PubMed  CAS  Google Scholar 

  81. Heginbotham, L. and MacKinnon, R (1992) The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483–491.

    Article  PubMed  CAS  Google Scholar 

  82. Kwan, D. C., Eduljee, C., Lee, L., Zhang, S., Fedida, D., and Kehl, S. J. (2004) The external K+ concentration and mutations in the outer pore mouth affect the inhibition of kv1.5 current by Ni2+. Biophys. J. 86, 2238–2250.

    PubMed  CAS  Google Scholar 

  83. Fedida, D., Maruoka, N. D., and Lin, S. (1999) Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intra-cellular permeant cations. J. Physiol. 515, 315–329.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, S. T., Kwan, D. C. H., Fedida, D., and Kehl, S. J. (2001) External K+ relieves the block but not the gating shift caused by Zn2+ in human Kv1.5 potassium channels. J. Physiol. 532, 349–358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fedida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedida, D., Zhang, S., Kwan, D.C.H. et al. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification. Cell Biochem Biophys 43, 231–242 (2005). https://doi.org/10.1385/CBB:43:2:231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:2:231

Index Entries

Navigation