Skip to main content
Log in

Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Chronic pressure overload (PO) and volume overload (VO) result in morphologically and functionally distinct forms of myocardial hypertrophy. However, the molecular mechanism initiating these two types of hypertrophy is not yet understood. Data obtained from different cell types have indicated that the mitogen-activated protein kinases (MAPKs) comprising c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 play an important role in transmitting signals of stress stimuli to elicit the cellular response. We tested the hypothesis that early induction of MAPKs differs in two types of overload on the heart and associates with distinct expression of hypertrophic marker genes, namely ANF, α-myosin heavy chain (α-MHC), and β-MHC. In rats, VO was induced by aortocaval shunt and PO by constriction of the abdominal aorta. The PO animals were further divided into two groups depending on the severity of the constriction, mild (MPO) and severe pressure overload (SPO), having 35 and 85% aortic constriction, respectively. Early changes in MAPK activity (2–120 min and 1 to 2 d) were analyzed by the in vitro kinase assay using kinase-specific antibodies for p38, JNK, and ERK2. The change in expression of hypertrophy marker genes was examined by Northern blot analysis. In VO hypertrophy, the activity of p38 was markedly increased (10-fold), without changing the activity of ERK and JNK. However, during PO hypertrophy, the activity of JNK was significantly increased (two-to sixfold) and depended on the severity of the load. The activity of p38 was not changed in MPO hypertrophy, whereas it was slightly elevated (50%) in hearts with SPO. Similarly, ERK activity was not changed in hearts with MPO, but a transient rise in activity was observed in hearts with SPO. The expression of ANF and β-MHC genes was elevated in both PO and VO hypertrophy; however, this change was much greater in hearts subjected to PO than VO hypertrophy. α-MHC expression was downregulated in PO but remained unchanged in VO hypertrophy hearts. Thus, these results demonstrate differential activation of MAPKs in two types of cardiac hypertrophy and this, in part, may contribute to differential expression of cardiac muscle gene expression, giving rise to unique cardiac phenotype associated with different hemodynamic overloads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorell, B. H. and Carabello, B. A. (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102, 470–479.

    PubMed  CAS  Google Scholar 

  2. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., and Castelli, W. P. (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Engl. J. Med. 322, 1561–1566.

    Article  PubMed  CAS  Google Scholar 

  3. Spann, J. F. (1984) Functional changes in pathological hypertrophy, in. Growth of the Heart in Health and Disease (Zak, R., ed.), Raven, New York, pp. 421–466.

    Google Scholar 

  4. Sasayama, S., Ross, J. Jr., Franklin, D., Bloor, C. M., Bishop, S., and Dilley, R. B. (1975) Adaptation of the left ventricle to chronic pressure overload. Circ. Res. 38, 172–178.

    Google Scholar 

  5. Marino, T. A., Kent, R. L., Uboh, C. E., Fernandez, E., Thompson, E. W., and Cooper, G., IV. (1985) Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am. J. Physiol. 249, H371-H379.

    PubMed  CAS  Google Scholar 

  6. Mann, D. L., Urabe, Y., Kent, R. L., Vinciguerra, S., and Cooper, G. IV, (1991) Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium. Circ. Res. 68, 402–415.

    PubMed  CAS  Google Scholar 

  7. Urabe, Y., Hamada, Y., Spinale, F. G., et al. (1993) Cardiocyte contractile performance in experimental biventricular volume-overload hypertrophy. Am. J. Physiol. 264, H1615-H1623.

    PubMed  CAS  Google Scholar 

  8. Tsutsui, H., Ishihara, K., and Cooper, G. 4th (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260, 682–687.

    Article  PubMed  CAS  Google Scholar 

  9. Molkentin, J. D. and Dorn, G. W. (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426.

    Article  PubMed  CAS  Google Scholar 

  10. Sugden, P. H. and Clerk, A. (1998) Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases), in the myocardium. Circ. Res. 24, 345–352.

    Google Scholar 

  11. Satoh, T., Nakafuku, M., and Kaziro, Y. (1992) Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 267, 24,149–24,152.

    CAS  Google Scholar 

  12. Rozakis, A. M., McGlade, J., Mbamalu, G., et al. (1992) Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360, 689–692.

    Article  Google Scholar 

  13. Davis, R. J. (1993) The mitogen-activated protein kianse signal transduction pathway. J. Biol. Chem. 268, 14,553–14,556.

    CAS  Google Scholar 

  14. Kiriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.

    Article  Google Scholar 

  15. Derijard, B., Hibi, M., Wu, I. H., et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  17. Bogoyevitch, M. A. (2000) Signaling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovasc. Res. 45, 826–842.

    Article  PubMed  CAS  Google Scholar 

  18. Izumi, Y., Kim, S., Murakami, T., Yamanaka, S., and Iwao, H. (1998) Cardiac mitogen activated protien kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension 31, 50–56.

    PubMed  CAS  Google Scholar 

  19. Kacimi, R. and Gerdes, A. M. (2003) Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure. Hypertension 41, 968–977.

    Article  PubMed  CAS  Google Scholar 

  20. Fischer, T. A., Ludwig, S., Flory, E., et al. (2001). Activation of cardiac c-Jun NH2 terminal kinase and p38 mitogen activated protein kinase with abrupt changes in hemodynamic load. Hypertension 37, 1222–1228.

    PubMed  CAS  Google Scholar 

  21. Garcia, R. and Diebold, S. (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 24, 430–432.

    PubMed  CAS  Google Scholar 

  22. Ocampo, C., Ingram, P., Ilbawi, M., Arcilla, R. A., and Gupta, M. (2003) Revisiting the surgical creation of volume load by aorto-caval shunt in rats. Mol. Cell. Biochem. 251, 139–143.

    Article  PubMed  CAS  Google Scholar 

  23. Gupta, M. and Singal, P. K. (1989) Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ. Res. 64, 398–406.

    PubMed  CAS  Google Scholar 

  24. Xu, Q., Liu, Y., Gorospe, M., Udelsman, R., and Holbrook, N. J. (1996) Acute hypertension activated mitogen-activated protein kinases in arterial wall. J. Clin. Invest. 97, 508–514.

    PubMed  CAS  Google Scholar 

  25. Chirgwin, J. M., Przybyla, A. E., Macdonald, R. J., and Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.

    Article  PubMed  CAS  Google Scholar 

  26. Gupta, M. P., Gupta, M., Stewart, A., and Zak, R., (1991) Activation of alpha-myosin heavy chain gene expression by cAMP in cultured fetal rat heart-myocytes. Biochem. Biophys. Res. Commun. 174, 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  27. Grossman, W., Jones, D., and McLaurin, L. P. (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64.

    PubMed  CAS  Google Scholar 

  28. Calderon, A., Takahashi, N., Izzo, N. J., Thaik, C. M., and Colucci, W. S. (1995) Pressure- and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 92, 2385–2390.

    Google Scholar 

  29. Galcheva-Gargova, Z., Derijard, B., Wu, I. H., and Davis, R. J. (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265, 806–808.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Y., Huang, S., Sah, V. P., et al. (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273, 2161–2168.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen, P. (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell. Biol. 7, 353–361.

    Article  PubMed  CAS  Google Scholar 

  32. Clerk, A., Michael, A., and Sugden, P.H. (1998) Stimulation of the p38 mitogen-activated protein kianse pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonoists endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J. Cell. Biol. 142, 523–535.

    Article  PubMed  CAS  Google Scholar 

  33. Aikawa, R., Nagai, T., Kudoh, S., et al. (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39, 233–238.

    Article  PubMed  CAS  Google Scholar 

  34. Choukroun, G., Hajjar, R., Fry, S., et al. (1999) Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398.

    PubMed  CAS  Google Scholar 

  35. Liao, P., Georgakoupoulos, D., Kovacs, A., et al. (2001) The in vivo role of p38 MAP kinases in cardiac remodeling and restrictied cardiomyopathy. Proc. Natl. Acad. Sci. USA 98, 12,283–12,288.

    CAS  Google Scholar 

  36. Braz, J. C., Bueno, O. F., Liang, Q., et al. (2003) Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J. Clin. Invest. 111, 1475–1486.

    Article  PubMed  CAS  Google Scholar 

  37. Esposito, G., Naga Prasad, S. V., Rapacciuolo A., Mao, L., Koch, W. J., and Rockman, H. A. (2001) Cardiac overexpression of a Gq inhibitor blocks induction of extracellular signal-regulated kinase and c-jun NH2-terminal kinase activity in in vivo pressure overload. Circulation 103, 1453–1458.

    PubMed  CAS  Google Scholar 

  38. Liang, Q., Bueno, O. F., Wilkins, B. J., Kuan, C. Y., Xia, Y., and Molkentin, J. D. (2003) C-jun N-terminal kinase antagonizes cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO J. 22, 5079–5089.

    Article  PubMed  CAS  Google Scholar 

  39. Sadoshima, J., MonTagne, O., Wang, Q., et al. (2002) The MEKK1-JNK pathway plays a protective role in pressure hypertrophy but does not mediate cardiac hypertrophy. J. Clin. Invest. 110, 271–279.

    Article  PubMed  CAS  Google Scholar 

  40. Bueno, O. F. and Molkentin, J. D. (2002) Involvement of extracellular regulated kinase [???] in cardiac hypertrophy and cell death. Circ. Res. 91, 776–781.

    Article  PubMed  CAS  Google Scholar 

  41. Ramirez, M. T., Sah, V. P., Zhao, X. L., Hunter, J. J., Chien, K. R., and Brown, J. H. (1997) The MEKK-JNK pathway is stimulated by α1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J. Biol. Chem. 272, 14,057–14,061.

    CAS  Google Scholar 

  42. Zechner, D., Thuerauf, D. J., Hanford, D. S., McDonough, P. M., and Glembotski, C. C. (1997) A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J. Cell Biol. 139, 115–127.

    Article  PubMed  CAS  Google Scholar 

  43. Choukroun, G., Hajjar, R., Kyriakis, J. M., Bonventre, J. V., Rosenzweig, A., and Force, T. (1998) Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J. Clin. Invest. 102, 1311–1320.

    Article  PubMed  CAS  Google Scholar 

  44. Silberbach, M., Gorenc, T., Hershberger, R. E., Stork, P. J., Steyger, P. S., and Roberts, C. T. Jr. (1999) Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J. Biol. Chem. 274, 24,858–24,864.

    Article  CAS  Google Scholar 

  45. Post, G. R., Goldstein, D., Thuerauf, D. J., Glembotski, C. C., and Brown, J. H. (1996) Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J. Biol. Chem. 271, 8452–8457.

    Article  PubMed  CAS  Google Scholar 

  46. Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., and Olson, E. N. (2001) Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 20, 2757–2767.

    Article  PubMed  CAS  Google Scholar 

  47. Su, X., Brower, G., Janicki, J. S., Chen, Y. F., Oparil, S., and Dell'Italia, L. J. (1999) Differential expression of natriuretic peptides and their receptors in volume overload cardiac hypertrophy in the rat. J. Mol. Cell. Cardiol. 31, 1927–1936.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, L. A., Nunez, D. J., and Wilkins, M. R. (1993) Differential regulation of natriuretic peptide messenger RNAs during development of cardiac hypetrophy in rat. J. Clin. Invest. 92, 2702–2712.

    PubMed  CAS  Google Scholar 

  49. Nishihara, H., Hwang, M., Kizaka-Kondoh, S., Eckmann, L., and Insel, P. A. (2004) Cyclic AMP promotes CREB-dependent induction of the cellular inhibitor of apoptosis protein-2 and suppresses apoptosis, of colon cancer cells through ERK1/2 and p38 MAPK. J. Biol. Chem. 279, 26,176–26,183.

    Article  CAS  Google Scholar 

  50. Thorburn, J., Xu, S., and Thorburn, A. (1997) MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells EMBO J. 16, 1888–1900.

    Article  PubMed  CAS  Google Scholar 

  51. Gupta, M. and Zak, R. (1992) Reversibility of the load induced changes in cardiac gene expression. Am. J. Physiol. 262, R346-R349.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sopontammarak, S., Aliharoob, A., Ocampo, C. et al. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys 43, 61–76 (2005). https://doi.org/10.1385/CBB:43:1:061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:061

Index Entries

Navigation