Skip to main content
Log in

Direct transfer of NADH from malate dehydrogenase to Complex I in Escherichia coli

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During aerobic growth of Escherichia coli, nicotinamide adenine dinucleotide (NADH) can initiate electron transport at either of two sites: Complex I (NDH-1 or NADH: ubiquinone oxidoreductase) or a single-subunit NADH dehydrogenase (NDH-2). We report evidence for the specific coupling of malate dehydrogenase to Complex I. Membrane vesicles prepared from wild type cultures retain malate dehydrogenase and are capable of proton translocation driven by the addition of malate+NAD. This activity was inhibited by capsaicin, an inhibitor specific to Complex I, and it proceeded with deamino-NAD, a substrate utilized by Complex I, but not by NDH-2. The concentration of free NADH produced by membrane vesicles supplemented with malate+NAD was estimated to be 1 μM, while the rate of proton translocation due to Complex I was consistent with a some what higher concentration, suggesting a direct transfer mechanism. This interpretation was supported by competition assays in which inactive mutant forms of malate dehydrogenase were able to inhibit Complex I activity.

These two lines of evidence indicate that the direct transfer of NADH from malate dehydrogenase to Complex I can occur in the E. coli system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt, U. (1998) Special issue-structure and function of complex I-preface. Biochim. Biophys. Acta 1364, 85–86.

    CAS  Google Scholar 

  2. Matsushita, K., Ohnishi, T., and Kaback, H. R. (1987) NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26, 7732–7737.

    Article  PubMed  CAS  Google Scholar 

  3. Calhoun, M. W., Oden, K. L., Gennis, R. B., de Mattos, M. J., and Neijssel, O. M. (1993) Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J. Bacteriol. 175, 3020–3025.

    PubMed  CAS  Google Scholar 

  4. Steuber, J. (2001) Na(+) translocation by bacterial NADH: quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim. Biophys. Acta 1505, 45–56.

    Article  PubMed  CAS  Google Scholar 

  5. Barnes, S. J. and Weitzman, P. D. (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201, 267–270.

    Article  PubMed  CAS  Google Scholar 

  6. Robinson, J. B., Jr., Inman, L., Sumegi, B., and Srere, P. A. (1987) Further characterization of the Krebs tricarboxylic acid cycle metabolon. J. Biol. Chem. 262, 1786–1790.

    PubMed  CAS  Google Scholar 

  7. Velot, C., Mixon, M. B., Teige, M., and Srere, P. A. (1997) Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36, 14271–14276.

    Article  PubMed  CAS  Google Scholar 

  8. Sumegi, B. and Srere, P. A. (1984) Complex I binds several mitochondrial NAD-coupled dehydrogenases. J. Biol. Chem. 259, 15040–15045.

    PubMed  CAS  Google Scholar 

  9. Srivastava, D. K. and Bernhard, S. A. (1986) Metabolite transfer via enzyme-enzyme complexes. Science 234, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  10. Cori, C. F., Velick, S. F., and Cori, G. T. (1950) The combination of diphosphopyridine nucleotide with glyceraldehyde phosphate dehydrogenase. Biochim. Biophys. Acta 4, 160–169.

    Article  PubMed  CAS  Google Scholar 

  11. Mahler, H. R. and Elowe, D. (1954) Interaction between glyceraldehyde phosphate dehydrogenase and DPNH-cytochrome reductase. Biochim. Biophys. Acta 14, 100–107.

    Article  PubMed  CAS  Google Scholar 

  12. Nygaard, A. P. and Rutter, W. J. (1956) Interaction of pyridine-nucleotide linked enzymes. Acta Chem. Scand. 10, 37–48.

    Article  CAS  Google Scholar 

  13. Davies, D. D., Teixeira, A., and Kenworthy, P. (1972) The stereospecificity of nicotinamide-adenine dinucleotide-dependent oxidoreductases from plants. Biochem. J. 127, 335–343.

    PubMed  CAS  Google Scholar 

  14. Ovadi, J., Huang, Y., and Spivey, H. O. (1994) Binding of malate dehydrogenase and NADH channelling to complex I. J. Mol. Recognit. 7, 265–272.

    Article  PubMed  CAS  Google Scholar 

  15. Fukushima, T., Decker, R. V., Anderson, W. M., and Spivey, H. O. (1989) Substrate channeling of NADH and binding of dehydrogenases to complex I. J. Biol. Chem. 264, 16483–16488.

    PubMed  CAS  Google Scholar 

  16. Ernster, L., Hoberman, H. D., Howard, R. L., King, T. E., Lee, C. P., Mackler, B., et al. (1965) Stereospecificity of certain soluble and particulate preparations of mitochondrial reduced nicotinamide-adenine dinucleotide dehydrogenase from beef heart. Nature 207, 940–941.

    Article  PubMed  CAS  Google Scholar 

  17. Kotlyar, A. B., Maklashina, E., and Cecchini, G. (2004) Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria. Biochem. Biophys. Res. Commun. 318, 987–991.

    Article  PubMed  CAS  Google Scholar 

  18. Srere, P. A. (1987) Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89–124.

    Article  PubMed  CAS  Google Scholar 

  19. Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol. Cell Proteomics 2, 117–126.

    Article  PubMed  CAS  Google Scholar 

  20. Weidner, U., Geier, S., Ptock, A., Friedrich, T., Leif, H., and Weiss, H. (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J. Mol. Biol. 233, 109–122.

    Article  PubMed  CAS  Google Scholar 

  21. Satoh, T., Miyoshi, H., Sakamoto, K., and Iwamura, H. (1996) Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Biochim. Biophys. Acta 1273, 21–30.

    Article  PubMed  Google Scholar 

  22. Hall, M. D., Levitt, D. G., McAlister-Henn, L., and Banaszak, L. J. (1991) Purification and crystallization of recombinant Escherichia coli malate dehydrogenase. J. Mol. Biol. 220, 551–553.

    Article  PubMed  CAS  Google Scholar 

  23. Amarneh, B. and Vik, S. B. (2003) Mutagenesis of subunit N of the Escherichia coli Complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 42, 4800–4808.

    Article  PubMed  CAS  Google Scholar 

  24. Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

  25. Voet, D. and Voet, J. G. (1995) Biochemistry, 2nd Ed., John Wiley & Sons, Inc., New York.

    Google Scholar 

  26. Bogachev, A. V., Murtazina, R. A., and Skulachev, V. P. (1996) H+/e stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J. Bacteriol. 178, 6233–6237.

    PubMed  CAS  Google Scholar 

  27. Stolpe, S. and Friedrich, T. (2004) The Escherichia coli NADH: ubiquinone oxidoreductase (complex I) is a primary proton-pump but may be capable of secondary sodium antiport. J. Biol. Chem. 279, 18377–18383.

    Article  PubMed  CAS  Google Scholar 

  28. Steuber, J., Schmid, C., Rufibach, M., and Dimroth, P. (2000) Na+ translocation by complex I (NADH: quinone oxidoreductase) of Escherichia coli. Mol. Microbiol. 35, 428–434.

    Article  PubMed  CAS  Google Scholar 

  29. Yagi, T. (1990) Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch. Biochem. Biophys. 281, 305–311.

    Article  PubMed  CAS  Google Scholar 

  30. Park, S. J., Cotter, P. A., and Gunsalus, R. P. (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177, 6652–6656.

    PubMed  CAS  Google Scholar 

  31. Calhoun, M. W. and Gennis, R. B. (1993) Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J. Bacteriol. 175, 3013–3019.

    PubMed  CAS  Google Scholar 

  32. Geck, M. K. and Kirsch, J. F. (1999) A novel, definitive test for substrate channeling illustrated with the aspartate aminotransferase/malate dehydrogenase system. Biochemistry 38, 8032–8037.

    Article  PubMed  CAS  Google Scholar 

  33. Boernke, W. E., Millard, C. S., Stevens, P. W., Kakar, S. N., Stevens, F. J., and Donnelly, M. I. (1995) Stringency of substrate specificity of Escherichia coli malate dehydrogenase. Arch. Biochem. Biophys. 322, 43–52.

    Article  PubMed  CAS  Google Scholar 

  34. Hall, M. D., and Banaszak, L. J. (1993) Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 A resolution. J. Mol. Biol. 232, 213–222.

    Article  PubMed  CAS  Google Scholar 

  35. Leif, H., Sled, V. D., Ohnishi, T., Weiss, H., and Friedrich, T. (1995) Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur. J. Biochem. 230, 538–548.

    Article  PubMed  CAS  Google Scholar 

  36. Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K., and Friedrich, T. (1998) Consistent structure between bacterial and mitochondrial NADH: ubiquinone oxidoreductase (complex I). J. Mol. Biol. 276, 105–112.

    Article  PubMed  Google Scholar 

  37. Wright, S. K., Zhao, F. J., Rardin, J., Milbrandt, J., Helton, M., and Furumo, N. C. (1995) Mechanistic studies on malte dehydrogenase from Escherichia coli. Arch. Biochem. Biophys. 321, 289–296.

    Article  PubMed  CAS  Google Scholar 

  38. Silverstein, E. and Sulebele, G. (1969) Catalytic mechanism of pig heart mitochondrial malate dehydrogenase studied by kinetics at equilibrium. Biochemistry 8, 2543–2550.

    Article  PubMed  CAS  Google Scholar 

  39. van der Rest, M. E., Frank, C., and Molenaard, D. (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J. Bacteriol. 182, 6892–6899.

    Article  PubMed  Google Scholar 

  40. Srivastava, D. K. and Bernhard, S. A. (1987) Mechanism of transfer of reduced nicotinamide adenine dinucleotide among dehydrogenases. Transfer rates and equilibria with enzyme-enzyme complexes. Biochemistry 26, 1240–1246.

    Article  PubMed  CAS  Google Scholar 

  41. Srivastava, D. K. and Bernhard, S. A. (1984) Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry 23, 4538–4545.

    Article  PubMed  CAS  Google Scholar 

  42. Srivastava, D. K., Smolen, P., Betts, G. F., Fukushima, T., Spivey, H. O., and Bernhard, S. A. (1989) Direct transfer of NADH between α-glycerol phosphate dehydrogenase and lactate dehydrogenase: factor misinterpretation?. Proc. Natl. Acad. Sci. USA, 86, 6464–6468.

    Article  PubMed  CAS  Google Scholar 

  43. Spehr, V., Schlitt, A., Scheide, D., Guénebaut, V., and Friedrich, T. (1999) Overexpression of the Escherichia coli nuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). Biochemistry 38, 16261–16267.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Vik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amarneh, B., Vik, S.B. Direct transfer of NADH from malate dehydrogenase to Complex I in Escherichia coli . Cell Biochem Biophys 42, 251–261 (2005). https://doi.org/10.1385/CBB:42:3:251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:42:3:251

Index Entries

Navigation