Skip to main content
Log in

Comparative analysis of vascular endothelial cell activation by TNF-α and LPS in humans and baboons

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

As an Old World nonhuman primate, baboons have been extensively used for research on dyslipidemia and atherogenesis. With increasing knowledge about the endothelium's role in the initiation and progression of atherosclerosis, the value of the baboon model can be increased by developing it for research on the role of dysfunctional endothelium in atherogenesis. Toward that goal, we have established and validated methods of isolating and culturing baboon femoral artery endothelial cells (BFAECs) and compared baboon endothelial cellular characteristics with those of humans. Our results indicated that baboon and human endothelial cells share similar growth and culture behaviors. As was the case for human endothelial cells, BFAECs responded to tumor necrosis factor (TNF)-α stimulation with increased expression of adhesion molecules (maximum increase for intracellular adhesion molecule (ICAM): 1.76±0.26-fold; vascular cell adhesion molecule (VCAM): 1.65±0.25-fold; E-selectin: 2.86±0.57-fold). However, BFAECs were hyporesponsive to lipopolysaccharide (LPS) (range, 0.25–20 μg/mL) in adhesion molecule expression, whereas 1 μg/mL LPS induced 2.14- to 3.71-fold increases in human endothelial cells. The differential responses to LPS were not related to TLR-2 and toll-like receptor (TLR)-4 expression on the cell surface. And baboon microvascular endothelial cells had similar features as BFAECs. We observed constitutive expression of interleukin (IL)-6, IL-8, granulocyte macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein (MCP)-1 in both human and baboon endothelial cells, and these cytokines were further induced by TNF-α and LPS. We also demonstrated that the responses to TNF-α or LPS varied among baboons maintained under the same dietary and environmental conditions, suggesting that response may be controlled by genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lusis, A. L. (2000) Atherosclerosis. Nature 407, 233–241.

    Article  PubMed  CAS  Google Scholar 

  2. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  3. Haskard, D. O. and Landis, R. C. (2002) Interactions between leukocytes and endothelial cells in gout: lessons from a self-limiting inflammatory response. Arthritis Res. 4 Suppl 3, S91-S97.

    Article  PubMed  Google Scholar 

  4. Hennig, B., Toborek, M., and McClain C. J. (2001) High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis. J. Am. Coll. Nutr. 2001; 20(2 Suppl), 97–105.

    Google Scholar 

  5. Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868–874.

    Article  PubMed  CAS  Google Scholar 

  6. Krieglstein, C. F. and Granger, D. N. (2001) Adhesion molecules and their role in vascular disease. Am. J. Hypertens. 14, 44S-54S.

    Article  PubMed  CAS  Google Scholar 

  7. Tailor, A. and Granger, D. N. (2000) Role of adhesion molecules in vascular regulation and damage. Curr. Hypertens. Rep. 2, 78–83.

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda, U., Matsui, K., Murakami, Y., and Shimada, K. (2002) Monocyte chemoattractant protein-1 and coronary artery disease. Clin. Cardiol. 25, 143–147.

    Article  PubMed  Google Scholar 

  9. Gerszten, R. E., Garcia-Zepeda, E. A., Lim, Y. C., Yoshida, M., Ding, H. A., Andrew, G., et al. (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723.

    Article  PubMed  CAS  Google Scholar 

  10. Kushwaha, R. S. and McGill, H. C., Jr. (1998) Diet, plasma lipoproteins and experimental atherosclerosis in baboons (Papio sp.). Hum Reprod Update 4, 420–429.

    Article  PubMed  CAS  Google Scholar 

  11. Kammerer, C. M., Cox, L. A., Mahaney, M. C., Rogers, J., and Shade, R. E. (2001) Sodium-lithium countertransport activity is linked to chromosome 5 in baboons. Hypertension 37, 398–402.

    PubMed  CAS  Google Scholar 

  12. Rainwater, D. L., Kammerer, C. M., Cox, L. A., Rogers, J., Carey, K. D., Dyke, B., et al. (2002) A major gene influences variation in large HDL particles and their response to diet in baboons. Atherosclerosis 163, 241–248.

    Article  PubMed  CAS  Google Scholar 

  13. Cox, L. A., Birnbaum, S., and VandeBerg, J. L. (2002) Identification of candidate genes regulating HDL cholesterol using a chromosomal region expression array. Genome Res. 12, 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  14. Amberger, A., Maczek, C., Jurgens G., Michaelis, D., Schett, G., Trieb, K., et al. (1997) Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2, 94–103.

    Article  PubMed  CAS  Google Scholar 

  15. Hewett, P. W. and Murray, J. C.. Isolation, culture and properties of microvessel endothelium from human breast adipose tissue. In: Endothelial cell culture. (Bicknell, R., ed.) Cambridge Press, New York, 1996, pp. 55–76.

    Google Scholar 

  16. Klein, C. L. (1994) Comparative studies on vascular endothelium in vitro. Pathobiology 62, 199–208.

    Article  PubMed  CAS  Google Scholar 

  17. Shen, J., Ham, R. G., and Karmiol, S. (1995) Expression of adhesion molecules in cultured human pulmonary microvascular endothelial cells. Microvasc. Res. 50, 360–372.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, F., Yu, W., Hargrove, J. L., Greenspan, P., Dean, R. G., Taylor, E. W., et al. (2002) Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis 161, 381–386.

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt, A., Goepfert, C., Feitsma, K., and Buddecke, E. (2002) Lovastatin-stimulated superinduction of E-selectin, ICAM-1 and VCAM-1 in TNF-alpha activated human vascular endothelial cells. Atherosclerosis 164, 57–64.

    Article  PubMed  CAS  Google Scholar 

  20. Protocols of harvesting endothelial cells. (2003) http://vrd.bwh.harvard.edu/core_facilities/ cell_bio_protocols.html.

  21. Briscoe, D. M., Cotran, R. S., and Pober, J. S. (1992) Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3+ T cell infiltration. J. Immunol. 149, 2954–2960.

    PubMed  CAS  Google Scholar 

  22. Zurovsky, Y., Laburn, H., Mitchell, D., and MacPhail, A. P. (1987) Responses of baboons to traditionally pyrogenic agents. Can. J. Physiol. Pharmacol. 65, 1402–1407.

    PubMed  CAS  Google Scholar 

  23. Redl, H., Bahrami, S., Schlag, G., and Traber, D. L. (1993) Clinical detection of LPS and animal models of endotoxemia. Immunology 187, 330–345.

    CAS  Google Scholar 

  24. Rogers, J., Mahaney, M. C., Witte, S. M., et al. (2002) A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67, 237–247.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Wang, J., Wang, X.L. et al. Comparative analysis of vascular endothelial cell activation by TNF-α and LPS in humans and baboons. Cell Biochem Biophys 40, 289–303 (2004). https://doi.org/10.1385/CBB:40:3:289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:3:289

Index Entries

Navigation