Skip to main content
Log in

Toward computational systems biology

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The development and successful application of high-throughput technologies are transforming biological research. The large quantities of data being generated by these technologies have led to the emergence of systems biology, which emphasizes large-scale, parallel characterization of biological systems and integration of fragmentary information into a coherent whole. Complementing the reductionist approach that has dominated biology for the last century, mathematical modeling is becoming a powerful tool to achieve an integrated understanding of complex biological systems and to guide experimental efforts of engineering biological systems for practical applications. Here I give an overview of current mainstream approaches in modeling biological systems, highlight specific applications of modeling in various settings, and point out future research opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    PubMed  CAS  Google Scholar 

  2. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  Google Scholar 

  3. Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.

    PubMed  CAS  Google Scholar 

  4. Ideker, T., Galitski,T., and Hood, L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372.

    PubMed  CAS  Google Scholar 

  5. Gregory, S. G., Sekhon, M., Schein, J., Zhao S., Osoegawa, K., Scott, C. E. et al. (2002) A physical map of the mouse genome. Nature 418, 743–750.

    PubMed  CAS  Google Scholar 

  6. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409,860–921.

    PubMed  CAS  Google Scholar 

  7. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G.,et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    PubMed  CAS  Google Scholar 

  8. Eckerskorn, C., Strupat, K., Karas, M., Hillenkamp, F. and Lottspeich, F. (1992) Mass spectrometric analysis of blotted proteins after gel electrophoretic separation by matrix-assisted laser desorption/ionization. Electrophoresis 13, 664–665.

    PubMed  CAS  Google Scholar 

  9. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.

    PubMed  CAS  Google Scholar 

  10. Mann, M., Hendrickson, R. C., and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473.

    PubMed  CAS  Google Scholar 

  11. Fields, S. and Song, O. (1989) A novel genetic system to detec protein-protein interactions. Nature 340, 245–246.

    PubMed  CAS  Google Scholar 

  12. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson,R. S., Knight, J. R., et al.(2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.

    PubMed  CAS  Google Scholar 

  13. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.

    PubMed  CAS  Google Scholar 

  14. Asthagiri, A. R., and Lauffenburger, D. A. (2000) Bioengineering models of cell signaling. Annu. Rev. Biomed. Eng. 2, 31–53.

    PubMed  CAS  Google Scholar 

  15. Arkin, A. P. (2001) Synthetic cell biology. Curr. Opin. Biotechnol. 12, 638–644.

    PubMed  CAS  Google Scholar 

  16. Endy, D. and Brent, R. (2001) Modelling cellular behaviour. Nature 409Suppl, 391–395.

    PubMed  CAS  Google Scholar 

  17. Gilman, A. and Arkin, A. P. (2002) Genetic “code”: representations and dynamical models of genetic components and networks. Annu. Rev. Genomics Hum. Genet. 3, 341–369.

    PubMed  CAS  Google Scholar 

  18. Rao, C. V. and Arkin, A. P. (2001) Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng. 3, 391–419.

    PubMed  CAS  Google Scholar 

  19. Tyson, J. J., Chen, K. and Novak, B., (2001) Network dynamics and cell physiology. Nat. Rev. Mol. Cell. Biol. 2, 908–916.

    PubMed  CAS  Google Scholar 

  20. Palsson, B. (2000) The challenges of in silico biology. Nat. Biotechnol. 18, 1147–1150.

    PubMed  CAS  Google Scholar 

  21. Bailey, J. E. (1998) Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Prog., 14, 8–20.

    PubMed  CAS  Google Scholar 

  22. Steven Wiley, H., Shvartsman, S. Y., and Lauffenburger, D. A. (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13, 43–50.

    PubMed  Google Scholar 

  23. Hasty, J., McMillen, D., Isaacs, F., and Collins, J. J. (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2, 268–279.

    PubMed  CAS  Google Scholar 

  24. Thieffry, D. and Sarkar, S. (1998) Forty years under the central dogma. Trends Biochem. Sci. 23, 312–316.

    PubMed  CAS  Google Scholar 

  25. Kohn, K. W. (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell. 10, 2703–2734.

    PubMed  CAS  Google Scholar 

  26. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabasi, A. L. (2000) The largescale organization of metabolic networks. Nature 407, 651–654.

    PubMed  CAS  Google Scholar 

  27. Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.

    PubMed  CAS  Google Scholar 

  28. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.

    PubMed  CAS  Google Scholar 

  29. Rives, A. W., and Galitski, T. (2003) Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100 1128–1133.

    PubMed  CAS  Google Scholar 

  30. Wagner, A. and Fell, D. A. (2001) The small world inside large metabolic networks. Proc. R. Soc. Lond. B. Biol. Sci. 268, 1803–1810.

    CAS  Google Scholar 

  31. Strogatz, S. H. (2001) Exploring complex networks. Nature 410, 268–276.

    PubMed  CAS  Google Scholar 

  32. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science 298, 824–827.

    PubMed  CAS  Google Scholar 

  33. Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68.

    PubMed  CAS  Google Scholar 

  34. Thomas, R. (1973) Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585.

    PubMed  CAS  Google Scholar 

  35. Glass, L., and Kauffman, S. A. (1973) The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.

    PubMed  CAS  Google Scholar 

  36. Glass, L., (1975) Classification of biological networks by their qualitative dynamics. J. Theor. Biol. 54, 85–107.

    PubMed  CAS  Google Scholar 

  37. Kauffman, S. A. (1993) The Origins of Order: Self-Organization and Selection in Evolution, Oxford University, New York.

    Google Scholar 

  38. Kuipers, B. (1986) Qualitative simulation. Artif. Intell. 29, 289–338.

    Google Scholar 

  39. Becskei, A. and Serrano, L. (2000) Engineering stability in gene networks by autoregulation. Nature 405, 590–593.

    PubMed  CAS  Google Scholar 

  40. Clarke B. L. (1988) Stoichiometric network analysis. Cell Biophys. 12, 237–253.

    PubMed  CAS  Google Scholar 

  41. Fell, D. A., (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286, 313–330.

    PubMed  CAS  Google Scholar 

  42. Kacser, H., and Burns, J. A. (1995) The control of flux. Biochem. Soc. Trans. 23, 341–366.

    PubMed  CAS  Google Scholar 

  43. Varma, A. and Palsson, B.O. (1994) Metabolic flux balancing-basic concepts, scientific and practical use. Bio-Technology 12, 994–998.

    CAS  Google Scholar 

  44. Stephanopoulos, G., Aristidou, A. A., and Nielsen, J. (1998) Metabolic Engineering. Principles and Methodologies, Academic, San Diego.

    Google Scholar 

  45. Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.

    PubMed  CAS  Google Scholar 

  46. Schilling, C. H. and Palsson, B. O. (1998) The underlying pathway structure of biochemical reaction networks. Proc. Natl. Acad. Sci. USA 95, 4193–4198.

    PubMed  CAS  Google Scholar 

  47. Edwards, J. S., Ibarra, R. U. and Palsson, B. O. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130.

    PubMed  CAS  Google Scholar 

  48. Schilling, C. H., Edwards, J. S., and Palsson, B. O. (1999) Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295.

    PubMed  CAS  Google Scholar 

  49. Edwards, J. S. and Palsson, B. O. (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416.

    PubMed  CAS  Google Scholar 

  50. Varner, J. and Ramkrishna, D. (1999) Mathematical models of metabolic pathways. Curr. Opin. Biotechnol. 10, 146–150.

    PubMed  CAS  Google Scholar 

  51. May, R. M. (1974) Stability and Complexity in Model Ecosystems, ed. 2, Princeton University, Princeton, NJ.

    Google Scholar 

  52. Levin, S. A., Grenfell, B., Hastings, A., and Perelson, A. S. (1997) Mathematical and computational challenges in population biology and ecosystems science. Science 275,334–343.

    PubMed  CAS  Google Scholar 

  53. Barkai, N., and Leibler, S. (1997) Robustness in simple biochemical networks. Nature 387, 913–917.

    PubMed  CAS  Google Scholar 

  54. Spiro, P. A., Parkinson, J. S., and Othmer, H. G. (1997) A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268.

    PubMed  CAS  Google Scholar 

  55. von Dassow, G., Meir, E., Munro, E. M., and Odell, G. M. (2000) The segment polarity network is a robust developmental module. Nature 406, 188–192.

    Google Scholar 

  56. Reinitz, J., Kosman, D., Vanario-Alonso, C. E., and Sharp, D. H. (1998) Stripe forming architecture of the gap gene system. Dev. Genet. 23, 11–27.

    PubMed  CAS  Google Scholar 

  57. Reinitz, J., Mjolsness, E., and Sharp, D. H. (1995) Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. J. Exp. Zool. 271, 47–56.

    PubMed  CAS  Google Scholar 

  58. Reinitz, J. and Sharp,D. H. (1995) Mechanism of eve stripe formation. Mech. Dev. 49, 133–158.

    PubMed  CAS  Google Scholar 

  59. Laub, M. T. and Loomis, W. F. (1998) A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol. Biol. Cell. 9, 3521–3532.

    PubMed  CAS  Google Scholar 

  60. McAdams, H. H. and Shapiro, L. (1995) Circuit simulation of genetic networks. Science 269, 650–656.

    PubMed  CAS  Google Scholar 

  61. Shea, M. A., and Ackers, G. K. (1985) The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230.

    PubMed  CAS  Google Scholar 

  62. Endy, D., Kong, D., and Yin, J. (1997) Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7. Biotech. Bioeng. 55, 375–389.

    CAS  Google Scholar 

  63. Reddy, B., and Yin, J. (1999) Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retroviruses. 15, 273–283.

    PubMed  CAS  Google Scholar 

  64. Eigen, M., Biebricher, C. K., Gebinoga, M., and Gardiner, W. C. (1991) The hypercycle. Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage. Biochemistry 30, 11005–11018.

    PubMed  CAS  Google Scholar 

  65. You, L., Suthers, P. F., and Yin, J. (2002) Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J. Bacteriol. 184, 1888–1894.

    PubMed  CAS  Google Scholar 

  66. Barkai, N. and Leibler, S. (2000) Circadian clocks limited by noise. Nature 403, 267–268.

    PubMed  CAS  Google Scholar 

  67. Smolen, P., Baxter, D. A., and Byrne, J. H. (2001) Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21, 6644–6656.

    PubMed  CAS  Google Scholar 

  68. Srivastava, R., Peterson, M. S. and Bentley, W. E. (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma (32)-targeted antisense. Biotechnol. Bioeng. 75, 120–129.

    PubMed  CAS  Google Scholar 

  69. Shuler, M. L., Leung, S., and Dick, C. C. (1979) A mathematical model for the growth of a single bacterial cell. Ann. NY Acad. Sci. 326, 35–55.

    CAS  Google Scholar 

  70. Novak, B., Csikasz-Nagy, A.,Gyorffy, B., Chen, K., and Tyson, J. J. (1998) Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 72, 185–200.

    PubMed  CAS  Google Scholar 

  71. Chen K. C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., and Tyson, J. J. (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell. 11, 369–391.

    PubMed  CAS  Google Scholar 

  72. Quick, D. J. and Shuler, M. L. (1999) Use of in vitro data for construction of a physiologically based pharmacokinetic model for naphthalene in rats and mice to probe species differences. Biotechnol. Prog. 15, 540–555.

    PubMed  CAS  Google Scholar 

  73. Winslow, R. L., Scollan, D. F., Holmes, A., Yung, C. K., Zhang, J., and Jafri, M. S. (2000) Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu. Rev. Biomed. Eng. 2, 119–155.

    PubMed  CAS  Google Scholar 

  74. Noble, D. (2002), Modeling the heart-from genes to cells to the whole organ. Science 295, 1678–82.

    PubMed  CAS  Google Scholar 

  75. Dupont, G., Pontes, J., and Goldbeter, A. (1996) Modeling spiral Ca2+ waves in single cardiac cells: role of the spatial heterogeneity created by the nucleus. Am. J. Physiol. 271, C1390-C1399.

    PubMed  CAS  Google Scholar 

  76. Schuster, S., Marhl, M., and Hofer, T. (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333–1355.

    PubMed  CAS  Google Scholar 

  77. Hofer, T., Politi, A., and Heinrich R. (2001) Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys. J. 80, 75–87.

    PubMed  CAS  Google Scholar 

  78. Hofer, T., Venance, L. and Giaume, C. (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci. 22, 4850–4859.

    PubMed  CAS  Google Scholar 

  79. Fink, C. C., Slepchenko, B., Moraru, II, Watras, J., Schaff, J. C., and Loew, L. M. (2000) An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J. 79, 163–183.

    PubMed  CAS  Google Scholar 

  80. Palsson, E., Lee, K. J., Goldstein, R. E., Franke, J., Kessin, R. H., and Cox, E. C. (1997) Selection for spiral waves in the social amoebae Dictyostelium. Proc. Natl Acad. Sci. USA 94, 13719–13723.

    PubMed  CAS  Google Scholar 

  81. Palsson, E. and Cox, E. C. (1996) Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories. Proc. Natl. Acad. Sci. USA 93, 1151–1155.

    PubMed  CAS  Google Scholar 

  82. Halloy, J., Lauzeral, J., and Goldbeter, A. (1998) Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells. Biophys. Chem. 72, 9–19.

    PubMed  CAS  Google Scholar 

  83. Tyson, J. J. and Murray, J. D. (1989) Cyclic AMP waves during aggregation of Dictyostelium amoebae. Development 106, 421–426.

    PubMed  CAS  Google Scholar 

  84. Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M., and Macara, I. G. (2002) Systems analysis of Ran transport. Science 295, 488–491.

    PubMed  CAS  Google Scholar 

  85. You, L. and Yin, J. (1999) Amplification and spread of viruses in a growing plaque. J. Theor. Biol. 200, 365–373.

    PubMed  CAS  Google Scholar 

  86. Yin, J. and McCaskill J. S. (1992) Replication of viruses in a growing plaque: a reaction-diffusion model. Biophys. J. 61, 1540–1549.

    PubMed  CAS  Google Scholar 

  87. Shvartsman, S. Y., Wiley, H. S., Deen, W. M., and Lauffenburger, D. A. (2001) Spatial range of autocrine signaling: modeling and computational analysis. Biophys J. 81, 1854–1867.

    PubMed  CAS  Google Scholar 

  88. Pribyl, M., Muratov, C. B., and Shvartsman, S. Y. (2003) Long-range signal transmission in autocrine relays. Biophys. J. 84, 883–896.

    PubMed  CAS  Google Scholar 

  89. Shvartsman, S. Y., Muratov, C. B., and Lauffenburger, D. A. (2002) Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129, 2577–2589.

    PubMed  CAS  Google Scholar 

  90. van Roon, M. A., Aten, J. A., van Oven, C. H., Charles, R., and Lamers, W. H. (1989) The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event. Dev. Biol. 136, 508–516.

    PubMed  Google Scholar 

  91. Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain P. S. (2002) Stochastic gene expression in a single cell. Science 297, 1183–1186.

    PubMed  CAS  Google Scholar 

  92. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73.

    PubMed  CAS  Google Scholar 

  93. Ross, I. L., Browne, C. M., and Hume, D. A. (1994) Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–185.

    PubMed  CAS  Google Scholar 

  94. Zlokarnik, G., Negulescu, P. A., Knapp, T. E., Mere, L., Burres, N., Feng, L., et al (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–88.

    PubMed  CAS  Google Scholar 

  95. McAdams, H. H. and Arkin, A. (1998) Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27, 199–224.

    PubMed  CAS  Google Scholar 

  96. Goss, P. J. E. and Peccoud, J. (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci. USA 95, 6750–6755.

    PubMed  CAS  Google Scholar 

  97. Morton-Firth, C. J. and Bray, D. (1998) Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128.

    PubMed  CAS  Google Scholar 

  98. Rao, C. V., Wolf, D. M., and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237.

    PubMed  CAS  Google Scholar 

  99. Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    CAS  Google Scholar 

  100. Gillespie, D. T. (1992) A rigorous derivation of the chemical master equation. Physica A. 188, 404–425.

    CAS  Google Scholar 

  101. Srivastava, R., You, L., Summers, J., and Yin, J. (2002) Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol 218, 309–321.

    PubMed  CAS  Google Scholar 

  102. McAdams, H. H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819.

    PubMed  CAS  Google Scholar 

  103. Seydel, R. (1994) Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, ed. 2, Springer-Verlag, New York.

    Google Scholar 

  104. Gibson, M. A. and Bruck, J. (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A. 104 1876–1889.

    CAS  Google Scholar 

  105. Haseltine, E. L. and Rawlings, J. B. (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959–6969.

    CAS  Google Scholar 

  106. Rao, C. V. and Arkin, A. P. (2003) Stochastic chemical kinetics and the quasi steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999–5010.

    CAS  Google Scholar 

  107. Hasty, J., Pradines, J., Dolnik M., and Collins, J. J. (2000) Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA 97, 2075–2080.

    PubMed  CAS  Google Scholar 

  108. Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136.

    Article  PubMed  CAS  Google Scholar 

  109. Gillespie, D. T. (2000) The chemical Langevin equation. J. Chem. Phys. 113, 297–306.

    CAS  Google Scholar 

  110. Gillespie, D. T. (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733.

    CAS  Google Scholar 

  111. Gillespie, D. T. (2002) The chemical Langevin Fokker-Planck equations for the reversible isomerization reaction. J. Phys. Chem. A. 106, 5063–5071.

    CAS  Google Scholar 

  112. Endy, D., You, L., Yin, J., and Molineux I. J. (2000) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc. Natl. Acad. Sci. USA 97, 5375–5380.

    PubMed  CAS  Google Scholar 

  113. Endy, D. (1997) Development and Application of a Genetically Structured Simulation for Bacteriophage T7, Ph.D. thesis, Dartmouth College.

  114. You, L. and Yin, J. (2001) Simulating the growth of viruses. Pac. Symp. Biocompu. 532–543.

  115. Nijhout, H. F. (2002) The nature of robustness in development. Bioessays 24, 553–563.

    PubMed  CAS  Google Scholar 

  116. Alon, U., Surette, M. G., Barkai, N., and Leibler, S. (1999) Robustness in bacterial chemotaxis. Nature 397, 168–171.

    PubMed  CAS  Google Scholar 

  117. Morohashi, M., Winn, A. E., Borisuk, M. T., Bolouri, H., Doyle, J., and Kitano, H. (2002) Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19–30.

    PubMed  CAS  Google Scholar 

  118. Calson, J. M. and Doyle, J. (2000) Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532.

    Google Scholar 

  119. Csete M. E. and Doyle, J. C. (2002) Reverse engineering of biological complexity. Science 295, 1664–1669.

    PubMed  CAS  Google Scholar 

  120. Meir, E., von Dassow, G., Munro, E., and Odell, G. M. (2002) Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786.

    PubMed  CAS  Google Scholar 

  121. You, L. (2002), The Extension, Application, and Generalization of a Phage T7 Intracellular Growth Model, Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.

    Google Scholar 

  122. Gibson, G. (2002) Developmental evolution: getting robust about robustness. Curr. Biol. 12, R347-R349.

    PubMed  CAS  Google Scholar 

  123. You, L. and Yin, J. (2002) Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage T7. Genetics 160, 1273–1281.

    PubMed  Google Scholar 

  124. Kobayashi, T., Chen, L., and Aihara, K. (2003) Modeling genetic switches with positive feedback loops. J. Theor. Biol. 221, 379–399.

    PubMed  CAS  Google Scholar 

  125. Hasty, J., Dolnik, M., Rottschafer, V., and Collins, J. J. (2002) Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88, 148101-1–148101-4.

    Google Scholar 

  126. Hasty, J., McMillen, D., and Collins, J. J. (2002) Engineered gene circuits. Nature 420, 224–230.

    PubMed  CAS  Google Scholar 

  127. Becskei, A., Seraphin, B., and Serrano, L. (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535.

    PubMed  CAS  Google Scholar 

  128. Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342.

    PubMed  CAS  Google Scholar 

  129. Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338.

    PubMed  CAS  Google Scholar 

  130. Weiss, R. (2001) Cellular Computation and Communications Using Engineered Genetic Regulatory Networks, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  131. Weiss, R. and Knight, T. (2000) Engineered communications for microbial robotics, in 6th International Workshop on DNA-Based Computers, DNA 2000 (Condon A., and Rozenberg, G., eds.) Leiden, The Netherlands, pp. 1–16.

  132. Atkinson, M. R., Savageau, M. A., Myers, J. T., and Ninfa, A. J. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607.

    PubMed  CAS  Google Scholar 

  133. Yokobayashi, Y., Weiss, R., and Arnold, F. H. (2002) Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591.

    PubMed  CAS  Google Scholar 

  134. Arnold, F. H. and Moore, J. C. (1997) Optimizing industrial enzymes by directed evolution. Adv. Biochem. Eng. Biotechnol 58, 1–14.

    PubMed  CAS  Google Scholar 

  135. Arnold, F. H. and Volkov, A. A. (1999) Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59.

    PubMed  CAS  Google Scholar 

  136. Hasty, J. (2002) Design then mutate. Proc. Natl. Acad. Sci. USA 99, 16516–16518.

    PubMed  CAS  Google Scholar 

  137. Mendes, P. (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363.

    PubMed  CAS  Google Scholar 

  138. Goryanin, I., Hodgman, T. C., and Selkov, E. (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749–758.

    PubMed  CAS  Google Scholar 

  139. Tomita, M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 19, 205–210.

    PubMed  CAS  Google Scholar 

  140. Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., and Loew, L. M. (1997) A general computational framework for modeling cellular structure and function. Biophys. J. 73, 1135–1146.

    PubMed  CAS  Google Scholar 

  141. Schaff, J. C., Slepchenko, B. M., and Loew, L. M. (2000) Physiological modeling with virtual cell framework. Methods Enzymol. 321, 1–23.

    PubMed  CAS  Google Scholar 

  142. Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003). Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678.

    PubMed  CAS  Google Scholar 

  143. You, L., Hoonlor, A., and Yin, J. (2003) Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436.

    PubMed  CAS  Google Scholar 

  144. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y., Miyoshi, F., et al. (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84.

    PubMed  CAS  Google Scholar 

  145. Hucka, M., Finney, A. Sauro, H. M., Bolouri, H., Doyle, J., and Kitano, H. (2002) The ERATO Systems Biology Workbench: enabling interaction and exchange between software tools for computational biology. Pac. Symp. Biocomput. 450–461.

  146. Bader, G. D., Donaldson, I., Wolting, C., Quellette, B. F., Pawson, T., and Hogue, C. W. (2001) BIND—The Biomolecular Interaction Network Database. Nucleic Acids Res. 29, 242–245.

    PubMed  CAS  Google Scholar 

  147. Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S. M., and Eisenberg, D. (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305.

    PubMed  CAS  Google Scholar 

  148. Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley, S. M., et al. (2002) The EcoCyc database. Nucleic Acids Res. 30, 56–58.

    PubMed  CAS  Google Scholar 

  149. Wixon, J. and Kell, D. (2000) The Kyoto encyclopedia of genes and genomes—KEGG. Yeast 17, 48–55.

    PubMed  CAS  Google Scholar 

  150. Xenarios, I. and Eisenberg, D. (2001) Protein interaction databases. Curr. Opin. Biotechnol. 12, 334–339.

    PubMed  CAS  Google Scholar 

  151. Lewin, B. (1997) Genes, ed. 6, Oxford University, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchong You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, L. Toward computational systems biology. Cell Biochem Biophys 40, 167–184 (2004). https://doi.org/10.1385/CBB:40:2:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:40:2:167

Index Entries

Navigation