Skip to main content
Log in

Stick and grip

Measurement systems and quantitative analyses of integrin-mediated cell adhesion strength

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cell adhesion to extracellular matrix components involves integrin receptor-ligand binding and adhesion strengthening, comprising receptor clustering, cytoskeletal interactions, and cell spreading. Although elucidation of the biochemical events in adhesive interactions is rapidly advancing, the mechanical processes and mechanisms of adhesion strengthening remain poorly understood. Because the biochemical and biophysical processes in adhesive interactions are tightly coupled, mechanical analyses of adhesion strength provide critical information on structure-function relationships. This review focuses on (a) measurement systems for cell adhesion strength and (b) quantitative analyses of integrin-mediated strengthening to extracellular matrix components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Arcangelis, A. and Georges-Labouesse, E. (2000) Integrin and ECM functions: roles in vertebrate development. Trends Genet. 16, 389–395.

    Article  PubMed  Google Scholar 

  2. Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  3. Van der Flier, A. and Sonnenberg, A. (2001) Function and interactions of integrins. Cell Tissue Res. 305, 285–298.

    Article  PubMed  CAS  Google Scholar 

  4. Bunting, M., Harris, E. S., Mclntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (2002) Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr. Opin. Hematol. 9, 30–35.

    Article  PubMed  Google Scholar 

  5. McEver, R. P. (2001) Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb. Haemost. 86, 746–756.

    PubMed  CAS  Google Scholar 

  6. Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T., and Fassler, R. (2002) Integrins in invasive growth. J. Clin. Invest. 109, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson, J. M., Bonfield, T. L., and Ziats, N. P. (1990) Protein adsorption and cellular adhesion and activation on biomedical polymers. Int. J. Artif. Organs 13, 375–382.

    PubMed  CAS  Google Scholar 

  8. Shen, M. and Horbett, T. A. (2001) The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J. Biomed. Mater. Res. 57, 336–345.

    Article  PubMed  CAS  Google Scholar 

  9. Lotz, M. M., Burdsal, C. A., Erickson, H. P., and McClay, D. R. (1989) Cell adhesion to fibronectin and tenascin: Quantitative measurements of initial binding and subsequent strengthening response. J. Cell Biol. 109, 1795–1805.

    Article  PubMed  CAS  Google Scholar 

  10. Faull, R. J., Kovach, N. L., Harlan, J., and Ginsberg, M. H. (1993) Affinity modulation of integrin a5b1: Regulation of the functional response to fibronectin. J. Cell Biol. 121, 155–162.

    Article  PubMed  CAS  Google Scholar 

  11. Choquet, D., Felsenfield, D. P., and Sheetz, M. P. (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeletal linkages. Cell 88, 39–48.

    Article  PubMed  CAS  Google Scholar 

  12. Duband, J.-L., Nuckolls, G. H., Ishihara, A., et al. (1988) Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107, 1385–1396.

    Article  PubMed  CAS  Google Scholar 

  13. Yauch, R. L., Felsenfeld, D. P., Kraeft, S. K., Chen, L. B., Sheetz, M. P., and Hemler, M. E. (1997) Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independent of ligand binding. J. Exp. Med. 186, 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  14. Miyamoto, S., Teramoto, H., Coso, O. A., et al. (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules, J. Cell Biol. 131, 791–805.

    Article  PubMed  CAS  Google Scholar 

  15. Jockusch, B. M., Bubeck, P., Giehl, K., et al. (1995) The molecular architecture of focal adhesions. Annu. Rev. Cell Dev. Biol. 11, 379–416.

    Article  PubMed  CAS  Google Scholar 

  16. Sastry, S. K. and Burridge, K. (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36.

    Article  PubMed  CAS  Google Scholar 

  17. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz, M. A. and Assoian, R. K. (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114, 2553–2560.

    PubMed  CAS  Google Scholar 

  19. Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399.

    Article  PubMed  CAS  Google Scholar 

  20. Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., and Kaibuchi, K. (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308–1311.

    Article  PubMed  CAS  Google Scholar 

  21. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., and Schlaepfer, D. D. (2000) FAK integrates growth-facor and integrin signals to promote cell migration. Nat. Cell Biol. 2, 249–256.

    Article  PubMed  CAS  Google Scholar 

  22. Chrzanowska-Wodnicka, M. and Burridge, K. (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  23. Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sasaki, Y., and Matsumura, F. (2000) Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150, 797–806.

    Article  PubMed  CAS  Google Scholar 

  24. Jalali, S., del Pozo, M. A., Chen, K., et al. (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA. 98, 1042–1046.

    Article  PubMed  CAS  Google Scholar 

  25. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., and Wang, Y. L. (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, H. B., Dembo, M., Hanks, S. K., and Wang, Y. Y. (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl. Acad. Sci. USA. 98, 11295–11300.

    Article  PubMed  CAS  Google Scholar 

  27. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., and Horwitz, A. f. (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540.

    Article  PubMed  CAS  Google Scholar 

  28. Glading, A., Chang, P., Lauffenburger, D. A., and Wells, A. (2000) Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J. Biol. Chem. 275, 2390–2398.

    Article  PubMed  CAS  Google Scholar 

  29. Tozeren, A., Sung, K. P., and Chien, S. (1989) Theoretical and experimental studies on cross-bridge migration during cell disaggregation. Biophys. J. 55, 479–487.

    PubMed  CAS  Google Scholar 

  30. Evans, E., Berk, D., Leung, A., and Mohandas, N. (1991) Detachment of aggutin-bonded red blood cells: I. Forces to rupture-point attachments. Biophys. J. 59, 838–848.

    PubMed  CAS  Google Scholar 

  31. McKeever, P. E. (1974) Methods to study pulmonary alveolar macrophage adhesion: micromanipulation and quantitation. J. Reticuloendothelial Soc. 16, 313–317.

    CAS  Google Scholar 

  32. Prechtel, K., Bausch, A. R., Marchi-Artzner, V., Kanthlehner, M., Kessler, H., and Merkel, R. (2002) Dynamic force spectroscopy to probe adhesion strength of living cells. Phys. Rev. Lett. 89, 28–101.

    Article  CAS  Google Scholar 

  33. Shao, J. Y. and Hochmuth, R. M. (1999) Mechanical anchoring strength of L-selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys. J. 77, 587–596.

    PubMed  CAS  Google Scholar 

  34. Litvinov, R. I., Shuman, H., Bennett, J. S., and Weisel, J. W. (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl. Acad. Sci. USA. 99, 7426–7431.

    Article  PubMed  CAS  Google Scholar 

  35. McClay, D. R., Wessel, G. M., and Marchase, R. B. (1981) Intercellular recognition: quantitation of initial binding events. Proc. Natl. Acad. Sci. USA 78, 4975–4979.

    Article  PubMed  CAS  Google Scholar 

  36. Chu, L., Tempelman, L. A., Miller, C., and Hammer, D. A. (1994) Centrifugation assay of IgE-mediated cell-adhesion to antigen-coated gels. AIChE J. 40, 692–703.

    Article  CAS  Google Scholar 

  37. Giacomello, E., Neumayer, J., Colombatti, A., and Perris, R. (1999) Centrifugal assay for fluorescence-based cell adhesion adapted to the analysis of ex vivo cells and capable of determining relative binding strengths. Biotechniques 26, 758–756.

    PubMed  CAS  Google Scholar 

  38. Reyes, C. D. and García, A. J. (2003) A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces. J. biomed. Mater. Res. (in press).

  39. Keselowsky, E. G., Collard, D. M., and García, A. J. (2003) Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res., in press.

  40. Konstantopoulos, K., Kukreti, S., and Mclntire, L. V. (1998) Biomechanics of cell interactions in shear fields. Adv. Drug Deliv. Rev. 33, 141–164.

    Article  PubMed  CAS  Google Scholar 

  41. Simon, S. I. and Goldsmith, H. L. (2002) Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30, 315–332.

    Article  PubMed  Google Scholar 

  42. Hammer, D. A. and Lauffenburger, D. A. (1987) A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52, 475–487.

    PubMed  CAS  Google Scholar 

  43. Xiao, Y., and Truskey, G. A. (1996) Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J. 71, 2869–2884.

    PubMed  CAS  Google Scholar 

  44. Doroszewski, J., Skierski, J., and Przadka, L. (1977) Interaction of neoplastic cells with glass surface under flow conditions. Exp. Cell Res. 104, 335–343.

    Article  PubMed  CAS  Google Scholar 

  45. Lawrence, M. B., Mclntire, L. V., and Eskin, S. G. (1987) Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70, 1284–1290.

    PubMed  CAS  Google Scholar 

  46. Truskey, G. A. and Pirone, J. S. (1990) The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces. J. Biomed. Mater. Res. 24, 1333–1353.

    Article  PubMed  CAS  Google Scholar 

  47. van Kooten, T. G., Schakenraad, J. M. van der Mei, H. C., and Busscher, H. J. (1992) Development and use of a parallel-plate flow chamber for studying cellular adhesion to solid surfaces. J. Biomed. Mater. Res. 26, 725–738.

    Article  PubMed  Google Scholar 

  48. Weiss, L. (1961) The measurement of cell adhesion. Exp. Cell Res. Suppl. 8, 141–153.

    Article  Google Scholar 

  49. Mohandas, N., Hockmuth, R. M., and Spaeth, E. F. (1974) Adhesion of red cells to foreign surfaces in the presence of flow. J. Biomed. Mater. Res. 8, 119–136.

    Article  PubMed  CAS  Google Scholar 

  50. Horbett, T. A., Waldburger, J. J., Ratner, B. D., and Hoffman, A. S. (1988) Cell adhesion to a series of hydrophillic-hydrophobic copolymers studied with a spinning disc apparatus. J. Biomed. Mater. Res. 22, 383–404.

    Article  PubMed  CAS  Google Scholar 

  51. Pratt, K. J., Jarrell, B. E., Williams, S. K., Carabasi, R. A., Rupnick, M. A., and Hubbard, F. A. (1988) Kinetics of endothelial cell-surface attachment forces. J. Vasc. Surg. 7, 591–599.

    Article  PubMed  CAS  Google Scholar 

  52. García, A. J., Ducheyne, P., and Boettiger, D. (1997) Quantification of cell adhesion using a spinning disk device and application to surface-reactive materials. Biomaterials 18, 1091–1098.

    Article  PubMed  Google Scholar 

  53. García, A. J., Huber, F., and Boettiger, D. (1998) Force required to break a5b1 integrinfibronectin bonds in intact adherent cells is sensitive to integrin activation state. J Biol. Chem. 273, 10988–10993.

    Article  PubMed  Google Scholar 

  54. Fowler, H. W., McKay, A. J. (1980) The measurement of microbial adhesion. In Microbial Adhesion to Surfaces (Berkeley, R. C. W., ed) Ellis Horwood, Chichester, England, 1980, pp. 143–192.

    Google Scholar 

  55. Cozens-Roberts, C., Quinn, J. A., and Lauffenburger, D. A. (1990) Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay. Biophys. J. 58, 857–872.

    PubMed  CAS  Google Scholar 

  56. Usami, S., Chen, H. H., Yihua, Z., Chien, S., and Skalak, R. (1993) Design and construction of a linear shear stress chamber. Ann. Biomed. Eng. 21, 77–83.

    Article  PubMed  CAS  Google Scholar 

  57. Burmeister, J. S., Vrany, J. D., Reichert, W. M., and Truskey, G. A. (1996) Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J. Biomed. Mater. Res. 30, 13–22.

    Article  PubMed  CAS  Google Scholar 

  58. Bundy, K. J., Harris, L. G., Rahn, B. A., and Richards, R. G. (2001) Measurement of fibroblast and bacterial detachment from biomaterials using jet impingement. Cell Biol. Int. 25, 289–307.

    Article  PubMed  CAS  Google Scholar 

  59. García, A. J., Takagi, J., and Boettiger, D. (1998) Two-stage activation for alpha5betal integrin binding to surface-adsorbed fibronectin. J. Biol. Chem. 273, 34710–34715.

    Article  PubMed  Google Scholar 

  60. Truskey, G. A. and Proulx, T. L. (1993) Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials 14, 243–254.

    Article  PubMed  CAS  Google Scholar 

  61. Carter, W. G., Rauvala, H., and Hakomori, S. I. (1981) Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin. J. Cell Biol. 88, 138–148.

    Article  PubMed  CAS  Google Scholar 

  62. Grinnell, F. (1980) The fibroblast receptor for cell-substratum adhesion: studies on the interaction of baby hamster kidney cells with latex beads coated by cold insoluble globulin (plasma fibronectin). J. Cell Biol. 86, 104–112.

    Article  PubMed  CAS  Google Scholar 

  63. Schwarz, M. A. and Juliano, R. L. (1984) Interaction of fibronectin-coated beads with CHO cells. Exp. Cell Res. 152, 302–312.

    Article  PubMed  CAS  Google Scholar 

  64. García, A. J., Schwarzbauer, I. E., and Boettiger, D. (2002) distinct activation states of alpha5betal integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry JID-0370623 41, 9063–9069.

    Google Scholar 

  65. Hemler, M. E., Huang, C., and Schwarz, L. (1987) The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J. Biol. Chem. 262, 3300–3309.

    PubMed  CAS  Google Scholar 

  66. García, A. J. and Boettiger, D. (1999) Integrinfibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials 20, 2427–2433.

    Article  PubMed  Google Scholar 

  67. Evans, E. A. (1985) Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys. J. 48, 185–192.

    PubMed  CAS  Google Scholar 

  68. Dembo, M., Torney, D. C., Saxman, K., and Hammer, D. (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. Ser. B 234, 55–83.

    CAS  Google Scholar 

  69. Ward, M. D. and Hammer, D. A. (1993) A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys J. 64, 936–959.

    PubMed  CAS  Google Scholar 

  70. Sung, K.L.P., Frojmovic, M. M., O’Toole, T. E., Zhu, C., Ginsberg, M. H., and Chien, S. (1993) Determination of adhesion force between single cell pairs generated by activated GPIIb-IIIa receptors. Blood 81, 419–423.

    PubMed  CAS  Google Scholar 

  71. Burmeister, J. S., McKinney, V. Z., Reichert, W. M., and Truskey, G. A. (1999) Role of endothelial cell-substrate contact area and fibronectin-receptor affinity in cell adhesion to HEMA/EMA copolymers. J. Biomed. Mater. Res. 47, 577–584.

    Article  PubMed  CAS  Google Scholar 

  72. Chan, P. Y., Lawrence, M. B., Dustin, M. L., Ferguson, L. M., Golan, D. E., and Springer, T. A. (1991) Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J. Cell Biol. 115, 245–255.

    Article  PubMed  CAS  Google Scholar 

  73. Kloboucek, A., Behrisch, A., Faix, J., and Sackmann, E. (1999) Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study. Biophys. J. 77, 2311–2328.

    PubMed  CAS  Google Scholar 

  74. Hato, T., Pampori, N., and Shattil, S. J. (1998) Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin alphallb beta3. J. Cell Biol. 141, 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  75. Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A., and Griffith, L. G. (2000) Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686.

    PubMed  CAS  Google Scholar 

  76. Balaban, N. Q., Schwarz, U. S., Riveline, D., et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472.

    Article  PubMed  CAS  Google Scholar 

  77. Galbraith, C. G. and Sheetz, M. P. (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA. 94, 9114–9118.

    Article  PubMed  CAS  Google Scholar 

  78. Ra, H. J., Picart, C., Feng, H., Sweeney, H. L., and Discher, D. E. (1999) Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion. J. Cell Sci. 112, 1425–1436.

    PubMed  CAS  Google Scholar 

  79. Riveline, D., Zamir, E., Balaban, N. Q., et al. (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDial-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  80. Galbraith, C. G., Yamada, K. M., and Sheetz, M. P. (2002) The relationship between force and focal complex development. J. Cell Biol. 159, 695–705.

    Article  PubMed  CAS  Google Scholar 

  81. Wang, N. and Ingber, D. E. (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66, 2181–2189.

    Article  PubMed  CAS  Google Scholar 

  82. Wang, N., Butler, J. P., and Ingber, D. E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  83. Ezzell, R. M., Goldmann, W. H., Wang, N., Parasharama, N., and Ingber, D. E. (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp. Cell Res. 231, 14–26.

    Article  PubMed  CAS  Google Scholar 

  84. Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R., and Sheetz, M. P. (1999) Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nat. Cell Biol. 1, 200–206.

    Article  PubMed  CAS  Google Scholar 

  85. Boettiger, D., Huber, F., Lynch, L., and Blystone, S. (2001) Activation of alpha(v)beta3-vitronectin binding is a multistage process in which increases in bond strength are dependent on Y747 and Y759 in the cytoplasmic domain of beta3. Mol. Biol Cell. 12, 1227–1237.

    PubMed  CAS  Google Scholar 

  86. Datta, A., Huber, F., and Boettiger, D. (2002) Phosphorylation of beta3 integrin controls ligand binding strength. J. Biol. Chem. 277, 3943–3949.

    Article  PubMed  CAS  Google Scholar 

  87. Xu, W., Baribault, H., and Adamson, E. D. (1998) Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337.

    PubMed  CAS  Google Scholar 

  88. Priddle, H., Hemmings, L., Monkley, S., et al. (1998) Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 142, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  89. Gallant, N. D., Capadona, J. R., Frazier, A. B., Collard, D. M., and García, A. J. (2002) Micropatterned surfaces for analyzing cell adhesion strengthening. Langmuir 18, 5579–5584.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés J. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, A.J., Gallant, N.D. Stick and grip. Cell Biochem Biophys 39, 61–73 (2003). https://doi.org/10.1385/CBB:39:1:61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:39:1:61

Index Entries

Navigation