Skip to main content
Log in

Catalytic antibodies

Structure and function

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

More than 10 years have now elapsed since the first reports confirmed that antibodies could be programmed as catalysts for chemical processes. Much of the initial research focussed on exploring the scope and utility of these new biocatalysts. Recently however, increasing information gleaned from X-ray analyses is allowing an exciting insight into the structural basis of antibody catalyzed reactions. This review details the evolving knowledge of the structure-function relationship for catalytic antibodies that accelerate a range of different reaction classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jencks, W. P. (1969) Strain, distortion and conformational change, in Catalysis in Chemistry and Enzymology McGraw-Hill, New York, pp. 288–289.

    Google Scholar 

  2. Pauling, L. (1948) Nature of forces between large molecules of biological interest. Nature 161, 707–709.

    Google Scholar 

  3. Tramontano, A., Janda, K. D., and Lerner, R. A. (1986) Catalytic antibodies. Science 234, 1566–1570.

    Article  PubMed  CAS  Google Scholar 

  4. Pollack, S. J., Jacobs, J. W., and Schultz, P. G. (1986) Selective chemical catalysis by an antibody. Science 234, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  5. Wentworth Jr., P. and Janda, K. D. (1998) Catalytic antibodies. Curr. Opin. Chem. Biol. 2, 138–144.

    Article  PubMed  CAS  Google Scholar 

  6. Wentworth Jr., P. and Janda, K. D. (1999) Catalytic antibodies, in Comprehensive Asymmetric Catalysis (Jacobsen, E. N., Pfaltz, A., and Yamamoto, H., eds.), Springer-Verlag, New York, pp. 1403–1426.

    Google Scholar 

  7. Blackburn, G. M., Datta, A., Denham, H., and Wentworth Jr., P. (1998) Catalytic antibodies. Adv. Phys. Org. Chem. 31, 249–392.

    CAS  Google Scholar 

  8. Schultz, P. G. and Lerner, R. A. (1995) From molecular diversity to catalysis: Lessons from the immune system. Science 269, 1835–1842.

    Article  PubMed  CAS  Google Scholar 

  9. Haynes, M. R., Stura, E. A., Hilvert, D., and Wilson, I. A. (1994) Routes to catalysis: Structure of a catalytic antibody and comparison with its natural counterpart. Science 263, 646–652.

    Article  PubMed  CAS  Google Scholar 

  10. Haynes, M. R., Stura, E. A., Hilvert, D., and Wilson, I. A. (1994) Crystallization and preliminary structural studies of a chorismate mutase catalytic antibody complexed with a transition state analog. Proteins: Struc. Funct. Genet 18, 198–200.

    Article  CAS  Google Scholar 

  11. MacBeath, G. and Hilvert, D. (1996) Hydrolytic antibodies: variations on a theme. Chem. Biol. 3, 433–445.

    Article  PubMed  CAS  Google Scholar 

  12. Charbonnier, J. B., Gigant, B., Golinelli-Pimpaneau, B., and Knossow, M. (1997) Similarities of hydrolytic antibodies revealed by their x-ray structures: a review. Biochimie 79, 653–660.

    Article  PubMed  CAS  Google Scholar 

  13. Wade, H. and Scanlan, T. S. (1997) The structural and functional basis of antibody catalysis. Annu. Rev. Biophys. Biomol. Struct. 26, 461–493.

    Article  PubMed  CAS  Google Scholar 

  14. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, U.S. Department of Health and Human Services, Public Health Service, NIH, Washington DC.

    Google Scholar 

  15. Burnet, F. M. (1959) The Clonal Selection Theory of Acquired Immunity. Vanderbilt University Press, Nashville, TN.

    Google Scholar 

  16. Stryer, L. (1995) Biochemistry, 4th ed. W. H. Freeman, New York.

    Google Scholar 

  17. Berek, C. and Milstein, C. (1988) The dynamic nature of the antibody repertoire. Immunol. Rev. 105, 5–26.

    Article  PubMed  CAS  Google Scholar 

  18. Burton, D. R. (1993) Monoclonal antibodies from combinatorial libraries. Acc. Chem. Res. 26, 405–411.

    Article  CAS  Google Scholar 

  19. Tonegawa, S. (1983) Somatic generation of antibody diversity. Nature 302, 575–581.

    Article  PubMed  CAS  Google Scholar 

  20. French, D. L., Laskov, R., and Scharff, M. D. (1989) The role of somatic hypermutation in the generation of antibody diversity. Science 244, 1152–1157.

    Article  PubMed  CAS  Google Scholar 

  21. Landsteiner, K. (1936) The Specificity of Serological Reactions. C. C. Thomas. Harvard University Press, Cambridge, MA.

    Google Scholar 

  22. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  Google Scholar 

  23. Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting-Mees, M., Burton, D. R., et al. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  24. Huse, W. D., Stinchcombe, T. J., Glaser, S. M., Starr, L., MacLean, M., Hellström, K. E., et al. (1992) Application of a filamentous phage pVIII fusion protein system suitable for efficient production, screening, and mutagenesis of F(ab) antibody fragments. J. Immunol. 149, 3914–3920.

    PubMed  CAS  Google Scholar 

  25. Barbas III, C. F. and Lerner, R. A. (1991) Combinatorial immunoglobulin libraries on the surface of phage (Phabs): Rapid selection of antigen-specific Fabs. Methods. Comp. Methods Enzymol. 2, 119–124.

    Article  CAS  Google Scholar 

  26. Jacobsen, N. E. and Bartlett, P. A. (1981) A phosphonamidate dipeptide analogue as an inhibitor of carboxypeptidase A. J. Am. Chem. Soc. 103, 654–657.

    Article  CAS  Google Scholar 

  27. Bartlett, P. A. and Marlowe, C. K. (1983) Phosphonamidates as transition state analogue inhibitors of thermolysin. Biochemistry 22, 4618–4624.

    Article  PubMed  CAS  Google Scholar 

  28. Bartlett, P. A. and Lamden, L. A. (1986) Inhibition of chymotrypsin by phosphonate and phosphonamidate peptide analogs. Bioorg. Chem. 14, 356–377.

    Article  CAS  Google Scholar 

  29. Tramontano, A., Janda, K. D., and Lerner, R. A. (1986) Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen. Proc. Natl. Acad. Sci. USA 83, 6736–6740.

    Article  PubMed  CAS  Google Scholar 

  30. Lesley, S. A., Patten, P. A., and Schultz P. G. (1993) A genetic approach to the generation of antibodies with enhanced catalytic activities. Proc. Natl. Acad. Sci. USA 90, 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  31. Wedemayer, G. J., Wang, L. H., Patten, P. A., Schultz, P. G., and Stevens, R. C. (1997) Crystal structures of the free and liganded form of an esterolytic catalytic antibody. J. Mol. Biol. 268, 390–400.

    Article  PubMed  CAS  Google Scholar 

  32. Wedemayer, G. J., Patten, P. A., Wang, L. H., Schultz, P. G., and Stevens, R. C. (1997) Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669.

    Article  PubMed  CAS  Google Scholar 

  33. Charbonnier, J.-P., Golinelli-Pimpaneau, B., Gigant, B., Tawfik, D. S., Chap, R., Schindler, D. G., et al. (1997) Structural convergence in the active sites of a family of catalytic antibodies. Science 275, 1140–1142.

    Article  PubMed  CAS  Google Scholar 

  34. Guo, J., Huang, W., and Scanlan, T. S. (1994) Kinetic and mechanistic characterization of an efficient hydrolytic antibody: evidence for the formation of an acyl intermediate. J. Am. Chem. Soc. 116, 6062–6069.

    Article  CAS  Google Scholar 

  35. Zhou, G. W., Guo, J., Huang, W., Fletterick, R. J., and Scanlan, T. S. (1994) Crystal structure of a catalytic antibody with a serine protease active site. Science 265, 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  36. Baca, M., Scanlan, T. S., Stephenson, R. C., and Wells, J. A. (1997) Phage display of a catalytic antibody to optimize affinity for transition-state analog binding. Proc. Natl. Acad. Sci. USA 94, 10,063–10,068.

    Article  CAS  Google Scholar 

  37. Buchbinder, J. L., Stephenson, R. C., Scanlan, T. S., and Fletterick, R. J. (1998) A comparison of the crystallographic structures of two catalytic antibodies with esterase activity. J. Mol. Biol. 282, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  38. Gao, C., Lavey, B. J., Lo, C.-H. L., Datta, A., Wentworth Jr., P., and Janda, K. D. (1998) Direct selection for catalysis from combinatorial antibody libraries using a boronic acid probe: Primary amide bond hydrolysis. J. Am. Chem. Soc. 120, 2211–2217.

    Article  CAS  Google Scholar 

  39. Janda, K. D., Schloeder, D., Benkovic, S. J., and Lerner, R. A. (1988) Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241, 1188–1191.

    Article  PubMed  CAS  Google Scholar 

  40. Stewart, J. D., Krebs, J. F., Siuzdak, G., Berdis, A. J., Smithrud, D. B., and Benkovic, S. J. (1994) Dissection of an antibody-catalyzed reaction. Proc. Natl. Acad. Sci. USA 91, 7404–7409.

    Article  PubMed  CAS  Google Scholar 

  41. Benkovic, S. J., Adams, J. A., Borders Jr., C. L., Janda, K. D., and Lerner, R. A. (1990) The enzymic nature of antibody catalysis: development of multistep kinetic processing. Science 250, 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  42. Gibbs, R. A., Benkovic, P. A., Janda, K. D., Lerner, R. A., and Benkovic, S. J. (1992) Substituent effects on an antibody catalyzed hydrolysis of phenylesters: further evidence for an acyl-antibody intermediate. J. Am. Chem. Soc. 114, 3528–3534.

    Article  CAS  Google Scholar 

  43. Krebs, J. F., Siuzdak, G., Dyson, H. J., Stewart, J. D., and Benkovic, S. J. (1995) Detection of a catalytic antibody species acylated at the active site by electrospray mass spectrometry. Biochemistry 34, 720–723.

    Article  PubMed  CAS  Google Scholar 

  44. Roberts, V. A., Stewart, J., Benkovic, S. J., and Getzoff, E. D. (1993) Catalytic antibody model and site-directed mutagenesis implicate arginine and histidine in catalytic mechanism. Protein Eng. 6, 85.

    Article  Google Scholar 

  45. Roberts, V. A., Stewart, J., Benkovic, S. J., and Getzoff, E. D. (1994) Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization. J. Mol. Biol. 235, 1098–1116.

    Article  PubMed  CAS  Google Scholar 

  46. Stewart, J. D., Roberts, V. A., Thomas, N. R., Getzoff, E. D., and Benkovic, S. J. (1994) Site-directed mutagenesis of a catalytic antibody: An arginine and a histidine residue play key roles. Biochemistry 33, 1994–2003.

    Article  PubMed  CAS  Google Scholar 

  47. Thayer, M. M., Olender, E. H., Arvai, A. S., Loike, C. K., Canestrelli, I. L., Stewart, J. D., et al. (1999) Structural basis for amide hydrolysis catalyzed by the 43C9 antibody. J. Mol. Biol. 291, 329–345.

    Article  PubMed  CAS  Google Scholar 

  48. Milstein, C. and Neuberger, M. S. (1996) Maturation of the immune response. Adv. Protein Chem. 49, 451–485.

    Article  PubMed  CAS  Google Scholar 

  49. Fujii, I., Tanaka, F., Miyashita, H., Tanimura, R., and Kinoshita, K. (1995) Correlation between antigen-combining-site structures and functions within a panel of catalytic antibodies generated against a single transition state analog. J. Am. Chem. Soc. 117, 6199–6209.

    Article  CAS  Google Scholar 

  50. Miyashita, H., Hara, T., Tanimura, R., Tanaka, F., Kikuchi, M., and Fujii, I. (1994) A common ancestry for multiple catalytic antibodies generated against a single transition-state analog. Proc. Natl. Acad. Sci. USA 91, 6045–6049.

    Article  PubMed  CAS  Google Scholar 

  51. Miyashita, H., Karaki, Y., Kikuchi, M., and Fujii, I. (1993) Prodrug activation via catalytic antibodies. Proc. Natl. Acad. Sci. USA 90, 5337–5340.

    Article  PubMed  CAS  Google Scholar 

  52. Gigant, B., Tsumuraya, T., Fujii, I., and Knossow, M. (1999) Diverse structural solutions to catalysis in a family of antibodies. Structure (London) 7, 1385–1393.

    CAS  Google Scholar 

  53. Brändén, C. and Tooze, J. (1991) Introduction to protein science, Garland, New York.

    Google Scholar 

  54. Kristensen, O., Vassylev, D. G., Tanaka, F., Morikawa, K., and Fujii, I. (1998) A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1.8 A. J. Mol. Biol. 281, 501–511.

    Article  PubMed  CAS  Google Scholar 

  55. Ulrich, H. D. and Schultz, P. G. (1998) Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies. J. Mol. Biol. 275, 95–111.

    Article  PubMed  CAS  Google Scholar 

  56. Guo, J., Huang, W., Zhou, G. W., Fletterick, R. J., and Scanlan, T. S. (1995) Mechanistically different catalytic antibodies obtained from immunisation with a single transition state analog. Proc. Natl. Acad. Sci. USA 92, 1694–1698.

    Article  PubMed  CAS  Google Scholar 

  57. Angeles, T. S., Smith, R. G., Sanchez, R. I., Darlsey, M. J., and Martin, M. T. (1993) Isoabzymes: Structurally and mechanistically similar catalytic antibodies generated from the same hybridoma fusion. Protein Eng. 6, 86.

    Google Scholar 

  58. Li, T., Lerner, R. A., and Janda, K. D. (1997) Antibody-catalyzed cationic reactions: Rerouting of chemical transformations via antibody catalysis. Acc. Chem. Res. 30, 115–121.

    Article  Google Scholar 

  59. Paschall, C. M., Hasserodt, J., Jones, T., Lerner, R. A., Janda, K. D., and Christianson, D. W. (1999) Convergence of catalytic antibody and terpene cyclase mechanisms: polyene cyclization directed by carbocation-π interactions. Angew. Chem. Int. Ed. Engl. 38, 1743–1747.

    Article  CAS  Google Scholar 

  60. Hasserodt, J., Janda, K. D., and Lerner, R. A. (1997) Formation of bridge-methylated decalins by antibody-catalyzed tandem cationic cyclization. J. Am. Chem. Soc. 119, 5993–5998.

    Article  CAS  Google Scholar 

  61. Seckler, B. and Poralla, K. (1986) Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius. Biochim. Biophys. Acta 881, 356–363.

    CAS  Google Scholar 

  62. Wendt, K. U., Poralla, K., and Schultz, G. E. (1997) Structure and function of a squalene cyclase. Science 277, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  63. Starks, C. M., Back, K., Chappell, J., and Noel, J. P. (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  64. Lesburg, C. A., Zhai, G., Cane, D. E., and Christianson, D. W. (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  65. Janda, K. D. (1993) Catalytic antibodies: The rerouting of chemical reactions. Biochem. Soc. Trans. 21, 1090–1095.

    PubMed  CAS  Google Scholar 

  66. Janda, K. D., Shevlin, C. G., and Lerner, R. A. (1993) Antibody catalysis of a disfavored chemical transformation. Science 259, 490–493.

    Article  PubMed  CAS  Google Scholar 

  67. Gouverneur, V. E., Houk, K. N., De Pascual-Teresa, B., Beno, B., Janda, K. D., and Lerner, R. A. (1993) Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science 262, 204–208.

    Article  PubMed  CAS  Google Scholar 

  68. Yli-Kauhaluoma, J. T., Ashley, J. A., Lo, C.-H., Tucker, L., Wolfe, M. M., and Janda, K. D. (1995) Anti-metallocene antibodies: a new approach to enantioselective catalysis of the Diels-Alder reaction. J. Am. Chem. Soc. 117, 7041–7047.

    Article  CAS  Google Scholar 

  69. Cravatt, B. F., Ashley, J. A., Janda, K. D., Boger, D. L., and Lerner, R. A. (1994) Crossing extreme mechanistic barriers by antibody catalysis: Syn elimination to a cis olefin. J. Am. Chem. Soc. 116, 6013–6014.

    Article  CAS  Google Scholar 

  70. Wentworth Jr., P., Datta, A., Blakey, D., Boyle, T., Partridge, L. J., and Blackburn, G. M. (1996) Towards antibody directed abzyme prodrug therapy, ADAPT: Carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell-killing. Proc. Natl. Acad. Sci. USA 93, 799–803.

    Article  PubMed  CAS  Google Scholar 

  71. Wentworth Jr., P., Datta, A., Smith, S., Marshall, A., Partridge, L. J., and Blackburn, G. M. (1997) Antibody catalysis of BAc2 aryl carbamate ester hydrolysis: a highly disfavored chemical process. J. Am. Chem. Soc. 119, 2315–2316.

    Article  CAS  Google Scholar 

  72. Baldwin, J. E. (1976) Rules for ring closure. J. Chem. Soc. Chem. Commun. 734–736.

  73. Baldwin, J. E. (1976) Approach vector analysis: a stereochemical approach to reactivity. J. Chem. Soc. Chem. Commun. 738–741.

  74. Na, J., Houk, K. N., Shevlin, C. G., Janda, K. D., and Lerner, R. A. (1993) The energetic advantage of 5-exo versus 6-endo epoxide openings: a preference overwhelmend by antibody catalysis. J. Am. Chem. Soc. 115, 8453–8454.

    Article  CAS  Google Scholar 

  75. Gruber, K., Zhou, B., Houk, K. N., Lerner, R. A., Shevlin, C. G., and Wilson, I. A. (1999) Structural basis for antibody catalysis of a disfavored ring closure reaction. Biochemistry 38, 7062–7074.

    Article  PubMed  CAS  Google Scholar 

  76. Sauer, J. (1966) Diels-Alder reactions: new preparative aspects. Angew. Chem. Int. Ed. Engl. 5, 211–220.

    Article  CAS  Google Scholar 

  77. Xu, J., Deng, Q., Chen, J., Houk, K. N., Bartek, J., Hilvert, D., and Wilson, I. A. (1999) Evolution of shape complementarity and catalytic efficiency from a primordial antibody template. Science 286, 2345–2348.

    Article  PubMed  CAS  Google Scholar 

  78. Romesberg, F. E., Spiller, B., Schultz, P. G., and Stevens, R. C. (1998) Immunological origins of binding and catalysis in a Diels-Alderase antibody. Science 279, 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  79. Meekel, A. A. P., Resmini, M., and Pandit, U. K. (1995) First example of an antibody-catalyzed hetero-Diel-Alder reaction. J. Chem. Soc. Chem. Commun. 571–572.

  80. Braisted, A. C. and Schultz, P. G. (1990) An antibody-catalyzed bimolecular Diels-Alder reaction. J. Am. Chem. Soc. 112, 7430–7431.

    Article  CAS  Google Scholar 

  81. Ulrich, H. D., Patten, P. A., Yang, P. L., Romesberg, F. E., and Schultz, P. G. (1995) Expression studies of catalytic antbodies. Proc. Natl. Acad. Sci. USA 92, 11907–11911.

    Article  PubMed  CAS  Google Scholar 

  82. Page, M. I. and Jencks, W. P. (1971) Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. USA 68, 1678–1683.

    Article  PubMed  CAS  Google Scholar 

  83. Heine, A., Stura, E. A., Yli-Kauhakuoma, J. T., Gao, C., Deng, Q., Beno, B. R., et al. (1998) An antibody exo Diels-Alderase inhibitor complex at 1.95 Angstrom resolution. Science 1934–1940.

  84. Blake, J. F. and Jorgensen, W. L. (1991) Solvent effects on a Diels-Alder reaction from computer simulations. J. Am. Chem. Soc. 113, 7430–7432.

    Article  CAS  Google Scholar 

  85. Rideout, D. C. and Breslow, R. (1980) Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc. 102, 7816–7817.

    Article  CAS  Google Scholar 

  86. Wirsching, P., Ashley, J. A., Lo, C.-H. L., Janda, K. D., and Lerner, R. A. (1995) Reactive immunization. Science 270, 1775–1782.

    Article  PubMed  CAS  Google Scholar 

  87. Lo, C.-H. L., Wentworth Jr., P., Jung, K. W., Yoon, J., Ashley, J. A., and Janda, K. D. (1997) Reactive immunization strategy generates antibodies with high catalytic proficiencies. J. Am. Chem. Soc. 119, 10,251–10,252.

    CAS  Google Scholar 

  88. Datta, A., Wentworth Jr., P., Shaw, J. P., and Janda, K. D. (1999) Catalytically distinct antibodies prepared by the reactive immunization versus transition state analogue hapten manifolds. J. Am. Chem. Soc. 121, 10,461–10,467.

    Article  CAS  Google Scholar 

  89. Wagner, J., Lerner, R. A., and Barbas III, C. F. (1995) Efficient aldolase catalytic antibodies that use the enamine mechanism of the natural enzyme. Science 270, 1797–1800.

    Article  PubMed  CAS  Google Scholar 

  90. Zhong, G., Hoffmann, T., Lerner, R. A., Danishefsky, S., and Barbas III, C. F. (1997) Antibody-catalyzed enantioselective Robinson annulation. J. Am. Chem. Soc. 119, 8131–8132.

    Article  CAS  Google Scholar 

  91. Björnestedt, R., Zhong, G., Lerner, R. A., and Barbas III, C. F. (1996) Copying nature's mechanism for the decarboxylation of β-keto acids into catalytic antibodies by reactive immunization. J. Am. Chem. Soc. 118, 11,720–11,724.

    Article  Google Scholar 

  92. Lerner, R. A. and Barbas III, C. F. (1996) Using the process of reactive immunization to induce catalytic antibodies with complex mechanisms: Aldolases. Acta. Chem. Scand. 50, 672–678.

    PubMed  CAS  Google Scholar 

  93. Barbas III, C. F., Hiene, A., Zhong, G., Hoffmann, T., Gramatikova, S., Björnestedt R., et al. (1997) Immune versus natural selection: Antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092.

    Article  PubMed  CAS  Google Scholar 

  94. Harlow, E. and Lane, D. P. (1988) Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  95. Knowles, J. R. (1991) Enzyme catalysis: not different, just better. Nature 350, 121–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Wentworth Jr. or Kim D. Janda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentworth, P., Janda, K.D. Catalytic antibodies. Cell Biochem Biophys 35, 63–87 (2001). https://doi.org/10.1385/CBB:35:1:63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:1:63

Index Entries

Navigation