Skip to main content
Log in

Metal concentrations in the liver and kidney of aquatic mammals and penguins

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We determined the hepatic and renal concentrations of Cd, Pb, Zn, Cu, and Fe in (1) marine mammals (three bottle-nosed dolphins, six California sea lions, and one sea otter), (2) freshwater and brackish-water mammals (one Oriental short-clawed otter and four European river otters), and (3) sea birds (three rock-hopper penguins, two king penguins, three Humboldt penguins, four Macaroni penguins, and four Magellanic penguins), all of which were kept in a zoo and an aquarium in Japan. We investigated the species-specificity of Cd accumulation in these aquatic animals. We also presented the basic data on metal concentrations. The concentrations of Cd in liver and kidney tended to be higher in marine mammals than in freshwater mammals. Many penguins, sea birds, showed high Cd concentrations. These results suggest that the habits of these animal species may be involved in accumulation of Cd. Pb concentrations were below the detection limit or low in both liver and kidney [not detected (ND)=0.132 µg/g and ND=0.183 µg/g, respectively]. The hepatic concentrations of Zn and Cu were high in young animals. In penguins, a positive correlation was found between the Zn and Cd concentrations in the liver and kidney and between the Cu and Cd concentrations in the liver. Individual variation was large in Fe concentration (48–3746 µg/g in the liver and 51–980 µg/g in the kidney).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ninomiya, K. Koizumi, and K. Murata, Concentrations of cadmium, zinc, copper, iron, and metallothionein in liver and kidney of nonhuman primates, Biol. Trace Element Res. 85, 95–111 (2002).

    Article  Google Scholar 

  2. A. Teranishi, R. Ninomiya, and N. Koizumi, Relationship of metallothionein to cadmium and to zinc in human liver and kidney, in Metallothionein, C. Klaassen, ed., Birkhauser, Basel, pp. 485–488 (1999).

    Google Scholar 

  3. N. Koizumi, K. Sumino, C. Hayashi, et al., Cadmium and other metal concentrations in tissues, Environ. Sci. 3, 137–148 (1995).

    CAS  Google Scholar 

  4. B. Lindqvist, K. Nystroem, B. Stegmayr, et al., Cadmium concentration in human kidney biopsies, Scand. J. Urol. Nephrol. 23, 213–217 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. E. H. Jeffery, R. Noseworthy, and M. G. Cherian, Age dependent changes in metallothionein and accumulation of cadmium in horses, Comp. Biochem. Physiol. C 93, 327–332 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. N. Koizumi, Y. Inoue, R. Ninomiya, et al., Relationship of cadmium accumulation to zinc or copper concentration in horse liver and kidney, Environ. Res. 49, 104–114 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. K. Nomiyama, H. Nomiyama, Y. Nomura, et al., Effect of dietary cadmium on rhesus monkeys, Environ. Health Perspect. 28, 223–243 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. C.-G. Elinder, L. Joensson, M. Piscator, et al., Histopathological changes in relation to cadmium concentration in horse kidneys, Environ. Res. 26, 1–21 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. A. A. K. Abou-Arab, Heavy metal contents in Egyptian meat and the role of detergent washing on their levels, Food Chem. Toxicol. 39, 593–599 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. Falandysz, Some toxic and trace metals in big game hunted in the northern part of Poland in 1987–1991, Sci. Total Environ. 141, 59–73 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. J. Falandysz, W. Kotecka, and K. Kannan, Mercury, lead, cadmium, manganese, copper, iron and zinc concentrations in poultry, rabbit and sheep from the northern part of Poland, Sci. Total Environ. 141, 51–57 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. J. Falandysz, Some toxic and essential trace metals in cattle from the northern part of Poland, Sci. Total Environ. 136, 177–191 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. V. Antoniou, N. Zantopoulos, and H. Tsoukali-Papadopoulou, Selected heavy metal concentration in goat liver and kidney, Vet. Hum. Toxicol. 37, 20–22 (1995).

    PubMed  CAS  Google Scholar 

  14. A. Frank, In search of biomonitors for cadmium: cadmium content of wild Swedish fauna during 1973–1976, Sci. Total Environ. 57, 57–65 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. C.-G. Elinder, Cadmium as an environmental hazard, IARC Sci. Publ. 118, 123–132 (1992).

    PubMed  Google Scholar 

  16. R. Dietz, F. Riget, and E. W. Born, Geographical differences of zinc, cadmium, mercury and selenium in polar bears (Ursus maritimus) from Greenland, Sci. Total Environ. 245, 25–47 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. M. Gamberg and B. M. Braune, Contaminant residue levels in arctic wolves (Canis lupus) from the Yukon Territory, Canada, Sci. Total Environ. 243–244, 329–338 (1999).

    Article  PubMed  Google Scholar 

  18. B. Pokorny and C. Ribaric-Lasnik, Lead, cadmium, and zinc in tissues of roe deer (Capreolus capreolus) near the lead smelter in the Koroska region (northern Slovenia), Bull. Environ. Contam. Toxicol. 64, 20–26 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. L. H. Stelter, Baseline levels of selected trace elements in Colorado oil shale region animals, J. Wildl. Dis. 16, 175–182 (1980).

    PubMed  CAS  Google Scholar 

  20. L. A. Lewis, R. J. Poppenga, W. R. Davidson, et al., Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility, Arch. Environ. Contam. Toxicol. 41, 208–214 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. Kottferova and B. Korenekova, Distribution of Cd and Pb in the tissues and organs of free-living animals in the territory of Slovakia, Bull. Environ. Contam. Toxicol. 60, 171–176 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. K. Julshamn and O. Grahl-Nielsen, Trace element levels in harp seal (Pagophilus groenlandicus) and hooded seal (Cystophora cristata) from the Greenland Sea. A multivariate approach, Sci. Total Environ. 250, 123–133 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. R. Wagemann, S. Innes, and P. R. Richard, Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic, Sci. Total Environ. 186, 41–66 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. J. P. Frodello and B. Marchand, Cadmium, copper, lead, and zinc in five toothed whale species of the Mediterranean Sea, Int. J. Toxicol. 20, 339–343 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. J. L. Zhou, S. M. Salvador, Y. P. Liu, et al., Heavy metals in the tissues of common dolphins (Delphinus delphis) stranded on the Portuguese coast, Sci. Total Environ. 273, 61–76 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. M. M. Storelli and G. O. Marcotrigiano, Environmental contamination in bottlenose dolphin (Tursiops truncatus): relationship between levels of metals, methylmercury, and organochlorine compounds in an adult female, her neonate, and a calf, Bull. Environ. Contam. Toxicol. 64, 333–340 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. N. Cardellicchio, S. Giandomenico, P. Ragone, et al., Tissue distribution of metals in striped dolphins (Stenella coeruleoalba) from the Apulian coasts, southern Italy, Mar. Environ. Res. 49, 55–66 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. J. P. Meador, D. Ernest, A. A. Hohn, et al., Comparison of elements in bottlenose dolphins stranded on the beaches of Texas and Florida in the Gulf of Mexico over a oneyear period, Arch. Environ. Contam. Toxicol. 36, 87–98 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. L. Holsbeek, U. Siebert, and C. R. Joiris, Heavy metals in dolphins stranded on the French Atlantic coast, Sci. Total Environ. 217, 241–249 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. C. Leonzio, S. Focardi, and C. Fossi, Heavy metals and selenium in stranded dolphins of the northern Tyrrhenian (NW Mediterranean), Sci. Total Environ. 119, 77–84 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. L. E. Harding, M. L. Hamis, and J. E. Elliot, Heavy and trace metals in wild mink (Mustela vison) and river otter (Lutra canadensis) captured on rivers receiving metals discharges, Bull. Environ. Contam. Toxicol. 61, 600–607 (1989).

    Article  Google Scholar 

  32. A. C. Gutleb, A. Kranz, G. Nechay, et al., Heavy metal concentrations in livers and kidneys of the otter (Lutra lutra) from Central Europe, Bull Environ. Contam. Toxicol. 60, 273–279 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. C. F. Mason, N. I. Last, and S. M. MacDonald, Mercury, cadmium, and lead in British otters, Bull. Environ. Contam. Toxicol. 37, 844–849 (1986).

    Article  PubMed  CAS  Google Scholar 

  34. C. D. Wren, Distribution of metals in tissues of beaver, raccoon and otter from Ontario, Canada, Sci. Total Environ. 34, 177–184 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. J. E. Marcovecchio, M. S. Gerpe, R. O. Bastida, et al., Environmental contamination and marine mammals in coastal waters from Argentina: an overview, Sci. Total Environ. 154, 141–151 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. C. Kemper, P. Gibbs, D. Obendorf, et al., A review of heavy metal and organochlorine levels in marine mammals in Australia, Sci. Total Environ. 154, 129–139 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. G. Steinhagen-Schneider, Cadmium and copper levels in seals, penguins and skuas from the Weddell Sea in 1982/1983, Polar Biol. 5, 139–143 (1986).

    Article  CAS  Google Scholar 

  38. R. Schneider, G. Steinhagen-Schneider, and H. E. Drescher, Organochlorines and heavy metals in seals and birds from the Weddell Sea, in Antarctic Nutrient Cycles and Food Webs. Proceedings of the 4th SCAR Symposium on Antarctic Biology, W. R. Siegfried, P. R. Condy, and R. M. Laws eds., Springer-Verlag, Berlin, pp. 652–655 (1985).

    Google Scholar 

  39. F. F. Munshower and D. R. Neuman, Metals in soft tissues of mule deer and antelope, Bull. Environ. Contam. Toxicol. 22, 827–832 (1979).

    Article  PubMed  CAS  Google Scholar 

  40. M. Shimizu and S. Morita, Effects of fasting on cadmium toxicity, glutathione metabolism, and metallothionein synthesis in rats, Toxicol. Appl. Pharmacol. 103, 28–39 (1990).

    Article  PubMed  CAS  Google Scholar 

  41. K. Kramer, A. Markwitan, A. Menne, et al., Zinc metabolism in fasted rats, J. Trace Elements Electrokytes Health Dis. 7, 141–146 (1993).

    CAS  Google Scholar 

  42. M. Shinogi, M. Sakatidani, and I. Yokoyama, Metallothionein induction in rat liver by dietary restriction or exercise and reduction of exercise-induced hepatic lipid peroxidation, Biol. Pharm. Bull. 22, 132–136 (1999).

    PubMed  CAS  Google Scholar 

  43. J. Hidalgo, M. Borras, J. S. Garvey, et al., Liver, brain, and heart metallothionein induction by stress, J. Neurochem. 55, 651–654 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. S. B. Chaumont, V. Maupoli, J. J. Lahet, et al., Effect of exercise training on metallothionein levels of hypertensive rats, Med. Sci. Sports Exec. 33, 724–728 (2001).

    Article  CAS  Google Scholar 

  45. M Giralt, T Gasull, J. Hernandez, et al., Effect of stress, adrenalectomy and changes in glutathione metabolism on rat kidney metallothionein content: comparison with liver metallothionein, Biometals 6, 171–178 (1993).

    PubMed  CAS  Google Scholar 

  46. K.-S. Min, The physiological significance of metallothionein in oxidative stress, Biomed. Res. Trace Elements 11, 150–160 (2000).

    CAS  Google Scholar 

  47. M. Sato and I. Bremner, Oxygen free radicals and metallothionein, Free Radical Biol. Med. 14, 325–337 (1993).

    Article  CAS  Google Scholar 

  48. A. Morita, D. Abdireyim, M. Kimura, et al., The effect of aging on the mineral status of female SAMP1 and SAMR1, Biol. Trace Element Res. 80, 53–65 (2001).

    Article  CAS  Google Scholar 

  49. R. Ninomiya, The behavior of cadmium in rat dams, fetuses and young; through pregnancy and nursing, Jpn. J. Hyg. 41, 624–639 (1986).

    CAS  Google Scholar 

  50. D. F. Kowalczyk, D. E. Gunson, C. R. Shoop, et al., The effects of natural exposure to high levels of zinc and cadmium in the immature pony as a function of age, Environ. Res. 40, 285–300 (1986).

    Article  PubMed  CAS  Google Scholar 

  51. R. Mason, A. Bakka, G. P. Samarawickrama, et al., Metabolism of zinc and copper in the neonate: accumulation and function of (Zn, Cu)-metallothionein in the liver of the newborn rat, Br. J. Nutr. 45, 375–389 (1981).

    Article  PubMed  CAS  Google Scholar 

  52. M. Abdulla and J. Chemielnicka, New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals, Biol. Trace Element Res. 23, 25–53 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninomiya, R., Koizumi, N. & Murata, K. Metal concentrations in the liver and kidney of aquatic mammals and penguins. Biol Trace Elem Res 97, 135–147 (2004). https://doi.org/10.1385/BTER:97:2:135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:2:135

Index Entries

Navigation