Skip to main content
Log in

Modulatory effect of copper on nonenzymatic antioxidants in freshwater fish Channa punctatus (Bloch.)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Effect of the low level of copper exposure on nonenzymatic antioxidants was studied in a freshwater fish Channa punctatus (Bloch.). Fish were exposed to cupric chloride at the concentration of 10 ppb for 4 wk (28 d) in a static culture condition. Copper significantly (p < 0.001) increased the serum ceruloplasmin level and total iron-binding capacity. A significant (p < 0.05) increase in reduced glutathione level was recorded in all of the tissues. With regard to nonprotein thiols, copper decreased their level in the liver, but increased it in the gill. The protein-bound thiols remained unaltered except for an increase in the liver. Metallothionein (MT) induction was observed in liver only. Copper exposure had no significant effect on the ascorbic acid level and induced no lipid peroxidation over control values. It is suggested that by modulating the ceruloplasmin level, copper indirectly protects the fish, as it facilitates conversion of pro-oxidant iron to nonoxidant iron. It also induces an array of antioxidants that may be beneficial to fish in the case of oxidative stress resulting from chemical pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Villar, S. E. Gomez, and C. A. Bentos, Lethal concentration of Cu in the neotropical fish Cnesterodon decemmaculatus (Pisces, Cyprinodontiformes), Bull. Environ. Contam. Toxicol. 65, 465–469 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. G. M. Christensen, J. M. McKim, W. A. Brungs, et al., Changes in the blood of the brown bullhead (Ictalurus nebulosus Lesueur) following short and long term exposure to copper(II), Toxicol. Appl. Pharmacol. 23, 417–427 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. W. B. Horning and T. W. Nieheisel, Chronic effect of copper on the bluntnose minnow, Pimephales notatus (Rafinesque), Arch. Environ. Contam. Toxicol. 8, 545–552 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. J. M. McKim, G. M. Christensen, and E. P. Hunt, Changes in the blood of brook trout (Salvelinus fontinalis) after short-term and long-term exposure to copper, J. Fish. Res. Bd. Can. 27, 1883–1889 (1970).

    CAS  Google Scholar 

  5. R. D. Handy, Dietary exposure to toxic metals in fish, in Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches, E W. Taylor, ed., Cambridge University Press, Cambridge, pp. 29–60 (1996).

    Google Scholar 

  6. G. Roesijadi and W. E. Robinson, Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release, in Aquatic Toxicology: Molecular, Biochemical and Cellular Perspectives, D. C. Malins and G. K. Ostrander, eds., Lewis, Boca Raton, FL, pp. 387–420 (1994).

    Google Scholar 

  7. M. M. Wintrobe, E. G. Cartwright, and J. G. Gubler, Studies on the function and metabolism of copper, J. Nutr. 50, 395–419 (1953).

    PubMed  CAS  Google Scholar 

  8. J.M.C. Gutteridge, Superoxide dismutase (erythrocuprein) and free-radicals in clinical chemistry, Ann. Clin. Biochem. 13, 393–398 (1953).

    Google Scholar 

  9. C. A. Reilly, M. Sorlie, and S. D. Aust, Evidence for a protein-protein complex during iron loading into ferritin by ceruloplasmin, Arch. Biochem. Biophys. 254, 165–171 (1998).

    Article  Google Scholar 

  10. L. L. Costanzo, G. D. Guidi, S. Giuffrida, et al., Determination of superoxide dismutase like activity of copper(II) complexes. Relevance of the speciation for the correct interpretation of in vitro O 2 scavenger activity, J. Inorg. Biochem. 50, 273–281 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. D. G. Dixon and J. B. Sprague, Acclimation to copper by rainbow trout Salmo gairdneri—a modifying factor in toxicity, Can. J. Fish Aquat. Sci. 38, 880–888 (1981).

    CAS  Google Scholar 

  12. D. Dupuy and S. Szabo, Protection by metals against ethanol-induced gastric mucosal injury in the rat, Gastroenterology 91, 966–974 (1986).

    PubMed  CAS  Google Scholar 

  13. D. J., Lauren and D. G. McDonald, Acclimation to copper by rainbow trout, Salmo gairdneri physiology, Can. J. Fish Aquat. Sci. 44, 99–104 (1987).

    CAS  Google Scholar 

  14. I. Ahmad, T. Hamid, M. Fatima, et al., Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch.) is a biomarker of paper mill effluent exposure, Biochim. Biophys. Acta 1523, 37–48 (2000).

    PubMed  CAS  Google Scholar 

  15. S. Pandey, I. Ahmad, S. Parvez, et al., Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch. 1. Protection against lipid peroxidation in liver by copper pre-exposure, Arch. Environ. Contam. Toxicol. 41, 345–352 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. L. S. Clesceri, A. E. Greenberg, and A. D. Eaton, eds., American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC (1998).

    Google Scholar 

  17. H. K. Schosinsky, P. H. Lehmann, and F. Beeler, Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride, Clin. Chem. 20, 1556–1563 (1974).

    PubMed  CAS  Google Scholar 

  18. W. N. Ramsay, The determination of the total iron-binding capacity of serum, Clin. Chim. Acta 259, 25–30 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. J. Mohandas, J. J. Marshall, G. G. Duggins, et al., Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Possible implications in analgesic neuropathy, Cancer Res. 44, 5086–5091 (1984).

    PubMed  CAS  Google Scholar 

  20. D. W. Jollow, J. R. Mitchell, N. Zampaglone, et al., Bromobenzene-induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzeneoxide as the hepatotoxic intermediate, Pharmacology 11, 151–169 (1974).

    PubMed  CAS  Google Scholar 

  21. J. Sedlak and H. R. Lindsay, Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissues with Ellman’s reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. I. Sayeed, I. Ahmad, M. Fatima, et al., Inhibition of brain Na+, K+-ATPase in freshwater fish (Channa punctatus Bloch) exposed to paper mill effluent, Bull. Environ. Contam. Toxicol. 65, 161–167 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. S. Majhi, B. S. Jena, and B. K. Patnaik, Effect of age on lipid peroxides, lipofuscin and ascorbic acid contents of the lungs of male garden lizard, Comp. Biochem. Physiol. 126(C), 293–298 (2000).

    CAS  Google Scholar 

  24. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  25. M. Uchiyama and M. Mihara, Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86, 271–278 (1978).

    Article  PubMed  CAS  Google Scholar 

  26. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, et al., Protein measurement with Folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  27. S. Osaki, D. A. Johnson, and E. Frieden, The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I, J. Biol. Chem. 246, 3108–3023 (1971).

    Google Scholar 

  28. Z. L. Harris, Y. Takahashi, H. Miyajima, et al., Aceruloplasminemia: molecular characterization of this disorder of iron metabolism, Proc. Natl. Acad. Sci. USA 92, 2539–2543 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. J. R. Proshaka, Biochemical functions of copper in animals, in Essential and Toxic Trace Elements in Human Health and Disease, A. S. Prasad, ed., Alan R. Liss, New York, pp. 105 (1994).

    Google Scholar 

  30. P. L. Fox, B. Mazumdar, E. Ehrenwald, et al., Ceruloplasmin and cardiovascular disease, Free Radical Biol. Med 28, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  31. R. J. Cousins, Adsorption, transport and hepatic metabolism of copper and zinc: special reference to metallothioneins and ceruloplasmin, Physiol. Rev. 65, 238–311 (1985).

    PubMed  CAS  Google Scholar 

  32. V. M. Samokyszyn, D. M. Miller, D. W. Reif, et al., Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin, J. Biol. Chem. 264, 21–26 (1989).

    PubMed  CAS  Google Scholar 

  33. J. M. Gutteridge, Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferrioxidase and radical scavenging activities, Chem. Biol. Interact. 56, 113–120 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. J. A. McCarter and M. Roch, Hepatic metallothionein and resistance to copper in juvenile coho salmon, Comp. Biochem. Physiol. 74(C), 133–137 (1983).

    CAS  Google Scholar 

  35. M. Saito and I. Bremner, Oxygen free radicals and metallothionein, Free Radical Biol. Med. 14, 325–337 (1993).

    Article  Google Scholar 

  36. J. T. Buckley, M. Roch, J. A. McCarter, et al., Chronic exposure of coho salmon to sublethal concentrations of copper—I. Effects on growth, accumulation and distribution of copper and on copper tolerance, Comp. Biochem. Physiol. 72, 15–19 (1982).

    Article  CAS  Google Scholar 

  37. K. Julshamn, K. J. Andersen, O. Ringdal, et al., Effects of dietary copper and zinc in the rainbow trout, Salmo gairdneri, Aquaculture 73, 143–155 (1988).

    Article  CAS  Google Scholar 

  38. N. S. Kosower and E. N. Kosower, The glutathione status of cells, Int. Rev. Cytol. 54, 109–159 (1978).

    Article  PubMed  CAS  Google Scholar 

  39. D. J. Reed and P. W. Beatty, Biosynthesis and regulation of glutathione: toxicological implications, in Reviews in Biochemical Toxicology, E. Hodgson, J. R. Bend, and R. M. Philpot, eds., Elsevier, Amsterdam, pp. 213–241 (1980).

    Google Scholar 

  40. L. Milne, P. Nicotera, S. Orrenius, et al., Effect of glutathione and chelating agents on copper mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione, Arch. Biochem. Biophys. 304, 102–109 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. L. Vigano, A. Arilloi, C. Falugi, et al., Biomarkers of exposure and effect in flounder (Platichthys flesus) exposed to sediments of the Adriatic sea, Mar. Pollut. Bull. 42, 887–894 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvez, S., Sayeed, I., Pandey, S. et al. Modulatory effect of copper on nonenzymatic antioxidants in freshwater fish Channa punctatus (Bloch.). Biol Trace Elem Res 93, 237–248 (2003). https://doi.org/10.1385/BTER:93:1-3:237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:93:1-3:237

Index Entries

Navigation