Skip to main content
Log in

Current knowledge of iron metabolism

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron plays many roles in human physiology. In this article, we summarize the basic and current knowledge of this essential micronutrient on human metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fernandez, Elementos de Grupo VIII. Química General e Inorgánica, Losada, Buenos Aires (1978).

    Google Scholar 

  2. P. Dallman, Iron. Present Knowledge in Nutrition, 6th ed. International Life Sciences Institute. Washington, DC (1990).

    Google Scholar 

  3. S. Castro del Pozo, Metabolismo del Hierro Normal y Patológico, Segunda edición. Masson, Barcelona (1995).

    Google Scholar 

  4. Goodman and Gilman, The Pharmacological Basis of Therapeutics, Pergamon, Elmford, NY (1996).

    Google Scholar 

  5. J. Beard and D. Piñero, Metabolismo del Hierro. Deficiencia de Hierro, CESNI, Buenos Aires, pp. 13–47 (1997).

    Google Scholar 

  6. A. Lehninger, D. Nelson, and M. Cox, Principles of Biochemistry. Worth, New York (1995).

    Google Scholar 

  7. B. Skikne, S. Lynch, and J. Cook, Role of gastric acid in food iron absorption, Gastroenterology 81, 1068–1071 (1981).

    PubMed  CAS  Google Scholar 

  8. C. Carpenter and A. Mahoney, Contributions of heme and nonheme iron to human nutrition, Crit. Rev. Food Sci. Nutr. 31, 333–367 (1992).

    PubMed  CAS  Google Scholar 

  9. M. Hernández Garcia, Anemia ferropénica, Medicine 10, 545–554 (1993).

    Google Scholar 

  10. M. Conrad, J. Umbreit, and E. Moore, Iron absorption and transport, Am. J. Med. Sci. 318, 213–229 (1999).

    PubMed  CAS  Google Scholar 

  11. K. Raja, R. Simpson, and T. Peters, Comparison of 59Fe3+ uptake in vitro and in vivo by mouse duodenum, Biochem, Biophys. Acta 901, 52–60 (1987).

    CAS  Google Scholar 

  12. M. Conrad, J. Umbreit, and E. Moore, A role of mucin in the absorption of inorganic iron and other metal cations. A study in rats, Gastroenterology 100, 129–136 (1991).

    PubMed  CAS  Google Scholar 

  13. A. Ohta, M. Ohtsuki, S. Baba, et al., Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient rats, J. Nutr. Sci. Vitaminol. 41, 281–291 (1994).

    Google Scholar 

  14. A. Hofman, Regulation of metal absorption in the gastrointestinal tract, Gut 39, 625–628 (1996).

    Google Scholar 

  15. W. Stremmenl, G. Lotz, C. Niederau, et al., Iron uptake by rat duodenal microvellous membrane vesicles: evidence for a carrier mediated transport system, Eur. J. Clin. Invest. 17, 136–145 (1987).

    Google Scholar 

  16. R. Teichmann and W. Stremmel, Iron uptake by human upper small intestine microvillous membrane vesicles. Indication for a facilitated transport mechanism mediated by a membrane iron-binding protein, J. Clin. Invest. 86, 2145–2153 (1990).

    PubMed  CAS  Google Scholar 

  17. M. Conrad, J. Umbreit, R. Peterson, et al., Function of integrin in duodenal mucosal uptake of iron, Blood 81, 517–521 (1993).

    PubMed  CAS  Google Scholar 

  18. Y. Ikeda, H. Orimo, S. Hisayasu, et al., Characteristics of iron binding to solubilize brush border membrane of the rat intestine, J. Nutr. Sci. Vitaminol. 41, 419–432 (1995).

    Google Scholar 

  19. S. Raffin, C. Woo, K. Roost, et al., Intestinal absorption of hemoglobin hemo iron cleavage by mucosal hemo oxygenase, J. Clin. Invest. 54, 1344–1352 (1974).

    PubMed  CAS  Google Scholar 

  20. C. Uzel and M. Conrad, Absorption of heme iron, Semin. Hematol. 35, 27–34 (1998).

    PubMed  CAS  Google Scholar 

  21. M. Conrad, J. Umbreit, and E. Moore, Rat duodenal iron-binding protein mobilferrin is a homologue of calreticulin, Gastroenterology 104, 1700–1704 (1993).

    PubMed  CAS  Google Scholar 

  22. M. Conrad, J. Umbreit, and E. Moore, Regulation of iron absorption: proteins involved in duodenal mucosal uptake and transport, J. Am. Coll. Nutr. 12, 720–728 (1993).

    PubMed  CAS  Google Scholar 

  23. P. Whittaker, B. Skikne, A. Covell, et al., Duodenal iron proteins in idiopathic hemochromatosis, J. Clin. Invest. 83, 261–267 (1989).

    PubMed  CAS  Google Scholar 

  24. A. Pietrangelo, E. Rocchi, G. Casalgrandi, et al., Regulation of transferrin, transferrin receptor, and ferritin genes in human duodenum, Gastroenterology 102, 802–809 (1992).

    PubMed  CAS  Google Scholar 

  25. A. Pietrangelo, G. Casalgrandi, D. Quaglino, et al., Duodenal ferritin synthesis in genetic hemochromatosis, Gastroenterology 108, 208–217 (1995).

    PubMed  CAS  Google Scholar 

  26. G. Bakker and R. Boyer, Iron incorporation into apoferritin. The role of apoferritin as a ferroxidase, J. Biol. Chem. 28, 13,182–13,185 (1986).

    Google Scholar 

  27. P. Wollenberg, R. Mahlberg, and W. Rummel, The valency state of absorbed iron appearing in the portal blood and ceruloplasmin substitution, Biol. Met. 3, 1–7 (1990).

    PubMed  CAS  Google Scholar 

  28. C. Mukhopadhyay, Z. Attieh, and P. Fox, Role of ceruloplasmin in cellular iron uptake, Science 279, 714–717 (1998).

    PubMed  CAS  Google Scholar 

  29. J. Urbanowski and R. Piper, The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane, J. Biol. Chem. 274, 38,061–38,070 (1999).

    CAS  Google Scholar 

  30. M. Wessling-Resnick, Biochemistry of iron uptake, Crit. Rev. Biochem. Mol. Biol. 34, 285–314 (1999).

    PubMed  CAS  Google Scholar 

  31. D. Richardson, Role of ceruloplasmin and ascorbate in cellular iron release, J. Lab. Clin. Med. 134, 454–465 (1999).

    PubMed  CAS  Google Scholar 

  32. W. Bezwoda, J. Torrance, T. Bothwell, et al., Iron absorption from red and white wines, Scand. J. Haematol. 34, 121–127 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. R. Charlton and T. Bothwell, Iron absorption, Annu. Rev. Med. 34, 55–68 (1993).

    Google Scholar 

  34. T. Bothwell, R. Baynes, B. MacFarlane, et al., Nutritional iron requirements and food iron absorption, J. Intern. Med. 226, 357–365 (1989).

    PubMed  CAS  Google Scholar 

  35. K. Schumann, B. Elsenhans, C. Ehtechami, et al., Rat intestinal iron transfer capacity and the longitudinal distribution of its adaptation to iron deficiency, Digestion. 46, 35–45 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. D. Siegenberg, R. Baynes, T. Bothwell, et al., Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption, Am. J. Clin. Nutr. 53, 537–541 (1991).

    PubMed  CAS  Google Scholar 

  37. M. Reddy, R. Hurrell, and J. Cook, Estimation of nonheme-iron bioavailability from meal composition, Am. J. Clin. Nutr. 71, 937–943 (2000).

    PubMed  CAS  Google Scholar 

  38. W. Bezwoda, T. Bothwell, J. Torrance, et al., The relationship between marrow iron stores, plasma ferritin concentrations and iron absorption, Scand. J. Haematol. 22, 113–120 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. J. Cook, Adaptation in iron metabolism, Am. J. Clin. Nutr. 51, 301–308 (1990).

    PubMed  CAS  Google Scholar 

  40. L. Hulten, E. Gramatkovski, A. Gleerup, et al., Iron absorption from the whole diet. Relation to meal composition, iron requirements and iron stores, Eur. J. Clin. Nutr. 49, 794–808 (1995).

    PubMed  CAS  Google Scholar 

  41. S. Lynch, Absorción de Hierro: Interacción con Otros Nutrientes. Deficiencia de Hierro, CESNI. Buenos Aires, pp. 49–65 (1997).

    Google Scholar 

  42. D. Derman, T. Bothwell, A. MacPhail, et al., Importance of ascorbic acid in the absorption of iron from infant foods, Scand. J. Haematol. 25, 193–201 (1980).

    Article  PubMed  CAS  Google Scholar 

  43. D. Derman, T. Bothwell, J. Torrance, et al., Iron absorption from maize (Zea mays) and Sorghum (Sorghum vulgare) beer, Br. J. Nutr. 43, 271–279 (1980).

    PubMed  CAS  Google Scholar 

  44. D. Ballot, R. Baynes, T. Bothwell, et al., The effects of fruit juices and fruits on the absorption of iron from a rice meal, Br. J. Nutr. 57, 331–343 (1987).

    PubMed  CAS  Google Scholar 

  45. S. Lynch, Interaction with other nutrients, Nutr. Rev. 55, 102–110 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. C. Martinez-Torres, E. Romano, and M. Layrisse, Effect of cysteine on iron absorption in man, Am. J. Clin. Nutr. 34, 322–327 (1981).

    PubMed  CAS  Google Scholar 

  47. A. Kane and D. Miller, In vitro estimation of the effects of selected proteins on iron bioavailability, Am. J. Clin. Nutr. 39, 393–401 (1984).

    PubMed  CAS  Google Scholar 

  48. M. Layrisse, C. Martinez-Torres, I. Leets, et al., Effect of histidine, cysteine, glutathione or beef on iron absorption in humans, J. Nutr. 114, 217–223 (1984).

    PubMed  CAS  Google Scholar 

  49. S. Lynch, S. Dassenko, T. Mork, et al., Soy protein products and heme iron absorption in humans, Am. J. Clin. Nutr. 41, 13–20 (1985).

    PubMed  CAS  Google Scholar 

  50. P. Taylor, C. Martinez-Torres, E. Romano, et al., The effect of cysteine-containing peptides related during meat digestion on iron absorption in humans, Am. J. Clin. Nutr. 43, 68–71 (1986).

    PubMed  CAS  Google Scholar 

  51. R. Hurrell, S. Lynch, T. Trinidad, et al., Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white, Am. J. Clin. Nutr. 47, 102–107 (1988).

    PubMed  CAS  Google Scholar 

  52. D. Suharno, C. West, L. Muhila, et al., Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia, Lancet 342, 1325–1328 (1993).

    PubMed  CAS  Google Scholar 

  53. M. García-Casal, M. Layrisse, L. Solano, et al., Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans, J. Nutr. 128, 646–650 (1998).

    PubMed  Google Scholar 

  54. M. García-Casal, I. Leets, and M. Layrisse, Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells, J. Nutr. 130, 5–9 (2000).

    PubMed  Google Scholar 

  55. P. Disler, S. Lynch, R. Charlton, et al., The effect of tea on iron absorption, Gut 16, 193–200 (1975).

    PubMed  CAS  Google Scholar 

  56. J. Cook, N. Noble, T. Morck, et al., Effect of fiber on nonheme iron absorption, Gastroenterology 85, 1354–1358 (1983).

    PubMed  CAS  Google Scholar 

  57. M. Gillooly, T. Bothwell, R. Charlton, et al., Factors affecting the absorption of iron from cereals, Br. J. Nutr. 51, 37–46 (1984).

    PubMed  CAS  Google Scholar 

  58. M. Reddy, R. Hurrell, M. Juillerat, et al., The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans, Am. J. Clin. Nutr. 63, 203–207 (1996).

    PubMed  CAS  Google Scholar 

  59. A. Sandberg, M. Brune, N. Carlson, et al., Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans, Am. J. Clin. Nutr. 70, 240–246 (1999).

    PubMed  CAS  Google Scholar 

  60. D. Derman, D. Ballot, T. Bothwell, et al., Factors influencing the absorption of iron from soy-bean protein products, Br. J. Nutr. 57, 345–353 (1987).

    PubMed  CAS  Google Scholar 

  61. R. Hurrell, D. Furniss, J. Burri, et al., Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate, Am. J. Clin. Nutr. 49, 1274–1282 (1989).

    PubMed  CAS  Google Scholar 

  62. R. Hurrell, M. Jullerat, M. Reddy, et al., Soy protein, phytate, and iron absorption in humans, Am. J. Clin. Nutr. 56, 573–578 (1992).

    PubMed  CAS  Google Scholar 

  63. S. Lynch, S. Dassenko, J. Cook, et al., Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans, Am. J. Clin. Nutr. 60, 567–572 (1994).

    PubMed  CAS  Google Scholar 

  64. E. Monsen and J. Cook, Food iron absorption in human subjects IV. The effects of calcium and phosphate salts on the absorption of nonheme iron, Am. J. Clin. Nutr. 29, 1142–1148 (1976).

    PubMed  CAS  Google Scholar 

  65. M. Brune, L. Rossander-Hulten, L. Hallberg, et al., Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups, J. Nutr. 122, 442–449 (1992).

    PubMed  CAS  Google Scholar 

  66. L. Jackson and K. Lee, The effect of dairy products on iron bioavailability, Crit. Rev. Food. Sci. Nutr. 31, 259–270 (1992).

    Article  PubMed  CAS  Google Scholar 

  67. J. Cook, S. Dassenko, and P. Whittaker, Calcium supplementation: effect on iron absorption, Am. J. Clin. Nutr. 53, 106–111 (1991).

    PubMed  CAS  Google Scholar 

  68. P. Minotti, S. Buchonski, and D. Miller, Effects of calcium supplementation, calcium source and lactose on iron absorption in the rat, Nutr. Res. 13, 1173–1181 (1993).

    CAS  Google Scholar 

  69. L. Hallberg, L. Rossander-Hulthen, M. Brune, et al., Calcium and iron absorption: mechanism of action and nutritional importance, Eur. J. Clin. Nutr. 46, 317–327 (1992).

    PubMed  CAS  Google Scholar 

  70. A. Gleerup, L. Rossander-Hulten, and L. Hallberg, Duration of the inhibitory effect of calcium on non-haem iron absorption in man, Eur. J. Clin. Nutr. 47, 875–879 (1993).

    PubMed  CAS  Google Scholar 

  71. M. Reddy and J. Cook, Effect of calcium intake on nonheme-iron absorption from a complete diet, Am. J. Clin. Nutr. 65, 1820–1825 (1997).

    PubMed  CAS  Google Scholar 

  72. L. Hallberg, Does calcium interfere with iron absorption? Am. J. Clin. Nutr. 68, 3–4 (1998).

    PubMed  CAS  Google Scholar 

  73. D. Hamilton, J. Bellamy, J. Valberg, et al., Zinc, cadmium, and iron interactions during intestinal absorption in iron-deficient mice, Can. J. Physiol. Pharmacol. 56, 384–389 (1978).

    PubMed  CAS  Google Scholar 

  74. L. Valberg, P. Flanagan, and M. Chamberlain, Effects of iron, tin, copper on zinc absorption in humans, Am. J. Clin. Nutr. 40, 536–541 (1984).

    PubMed  CAS  Google Scholar 

  75. R. Yip, J. Reeves, B. Lonnerdal, et al., Does iron supplementation compromise zinc nutrition in healthy infants? Am. J. Clin. Nutr. 42, 683–687 (1985).

    PubMed  CAS  Google Scholar 

  76. M. Yadrick, M. Kenny, and E. Winterfeldt, Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females, Am. J. Clin. Nutr. 49, 145–150 (1989).

    PubMed  CAS  Google Scholar 

  77. L. Rossander-Hulten, M. Brune, B. Sandstrom, et al., Competitive inhibition of iron absorption by manganese and zinc in humans, Am. J. Clin. Nutr. 54, 152–156 (1991).

    PubMed  CAS  Google Scholar 

  78. C. Walsh, H. Sandstead, A. Prasad, et al., Zinc: health effects and research priorities for the 1990s, Environ. Health Perspect. 102, 5–46 (1994).

    PubMed  CAS  Google Scholar 

  79. L. Davisson, A. Almgren, B. Sandstrom, et al., Zinc absorption in adult humans: the effect of iron fortification, Br. J. Nutr. 74, 417–425 (1995).

    Google Scholar 

  80. L. Hallberg, L. Rossander-Hulthen, M. Brune, et al., Inhibition of haem-iron absorption in man by calcium, Br. J. Nutr. 69, 533–540 (1993).

    PubMed  CAS  Google Scholar 

  81. M. O’Connell and T. Peters, Ferritin and haemosiderin in free radicals generations, lipid peroxidations and protein damage, Chem. Phys. Lipids 45, 241–249 (1987).

    PubMed  CAS  Google Scholar 

  82. J. Brock, Iron-binding proteins, Acta Paediatr. Scand. 361(Suppl.), 31–43 (1989).

    CAS  Google Scholar 

  83. P. Ponka, C. Beaumont, and D. Richardson, Function and regulation of transferrin and ferritin, Semin. Hematol. 35, 35–54 (1998).

    PubMed  CAS  Google Scholar 

  84. D. Boldt, New perspectives on iron: an introduction, Am. J. Med. Sci. 318, 207–212 (1999).

    PubMed  CAS  Google Scholar 

  85. E. Morgan, The role of plasma transferrin in iron absorption in the rat, Q. J. Exp. Physiol. Cogn. Med. Sci. 65, 239–252 (1980).

    PubMed  CAS  Google Scholar 

  86. E. Baker and P. Lindley, New perspectives on the structure and function of transferrins, J. Inorg. Biochem. 47, 147–160 (1992).

    PubMed  CAS  Google Scholar 

  87. A. Bomford and H. Munro, Transferrin and its receptor: their roles in cell function, Hepatology 5, 870–875 (1985).

    PubMed  CAS  Google Scholar 

  88. A. Bomford, S. Young, and R. Williams, Release of iron from the two iron-binding sites of transferrin by cultured human cells: modulation by methylamine, Biochemistry 24, 3472–3478 (1985).

    PubMed  CAS  Google Scholar 

  89. G. De Jong, J. van Dijk, and H. van Eijk, The biology of transferrin, Clin. Chim. Acta 190, 1–46 (1990).

    PubMed  Google Scholar 

  90. H. van Eijk and G. de Jong, The physiology of iron, transferrin, and ferritin, Biol. Trace Element Res. 35, 13–24 (1992).

    Google Scholar 

  91. G. McKnight, D. Lee, D. Hemmaplarh, et al., Transferrin gene expression. Effects of nutritional iron deficiency, J. Biol. Chem. 255, 144–147 (1980).

    PubMed  CAS  Google Scholar 

  92. R. Idzerda, H. Huebers, C. Finch, et al., Rat transferrin gene expression: tissue-specific regulation by iron deficiency, Proc. Natl. Acad. Sci. USA 83, 3723–3727 (1986).

    PubMed  CAS  Google Scholar 

  93. M. Zakin, Regulation of transferrin gene expression, FASEB J. 6, 3253–3258 (1992).

    PubMed  CAS  Google Scholar 

  94. P. Brissot, T. Wright, W. Ma, et al., Efficient clearence of non-transferrin-bound iron by rat liver. Implication for hepatic iron loading in iron overload states, J. Clin. Invest. 76, 1463–1470 (1985).

    Article  PubMed  CAS  Google Scholar 

  95. P. Ponka, Cell biology of heme, Am. J. Med. Sci. 318, 241–256 (1999).

    PubMed  CAS  Google Scholar 

  96. K. Davies, J. Maguire, G. Brooks, et al., Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion, Am. J. Physiol. 242, 418–427 (1982).

    Google Scholar 

  97. J. Johnson, W. Willis, P. Dallman, et al., Muscle mitochondrial ultrastructure in exercise-trained iron-deficient rats, J. Appl. Physiol. 68, 113–118 (1990).

    PubMed  CAS  Google Scholar 

  98. K. White and M. Marletta, Nitric oxide synthase is a cytochrome P-450 type hemeprotein, Biochemistry 31, 6627–6631 (1992).

    PubMed  CAS  Google Scholar 

  99. R. Beri and R. Chandra, Chemistry and biology of heme. Effect of metal salts, organometals, and metalloporphyrins on heme synthesis and catabolism, with special reference to clinical implications and interactions with cytochrome P-450, Drug Metab. Rev. 25, 49–52 (1993).

    PubMed  CAS  Google Scholar 

  100. M. Coon, A. Vaz, D. McGinnity, et al., Multiple activated oxygen species in P450 catalysis: contributions to specificity in drug metabolism, Drug Metab. Dispos. 26, 1190–1193 (1998).

    PubMed  CAS  Google Scholar 

  101. U. Siddhanta, C. Wu, H. Abu-Soud, et al., Heme iron reduction and catalysis by a nitric oxide synthase heterodimer containing one reductase and two oxygenase domains, J. Biol. Chem. 271, 7309–7312 (1996).

    PubMed  CAS  Google Scholar 

  102. C. Cooper, Nitric oxide and iron proteins, Biochim. Biophys. Acta 1411, 290–309 (1999).

    PubMed  CAS  Google Scholar 

  103. S. Lall, B. Singh, K. Gulati, et al., Role of nutrition in toxic injury, Indian J. Exp. Biol. 37, 109–116 (1999).

    PubMed  CAS  Google Scholar 

  104. A. Deiss, Iron metabolism in reticuloendothelial cells, Semin. Hematol. 20, 81–90 (1983).

    PubMed  CAS  Google Scholar 

  105. J. Zahringer, B. Balliga, and H. Munro, Novel mechanism for translational control in ferritin synthesis by iron, Proc. Natl. Acad. Sci. USA 73, 857–861 (1976).

    PubMed  CAS  Google Scholar 

  106. N. Aziz and H. Munro, Both subunits of rat liver ferritin are regulated at a translational level by iron induction, Nucleic Acids Res. 14, 915–927 (1986).

    PubMed  CAS  Google Scholar 

  107. M. Worwood, Ferritin, Blood Rev. 4, 259–269 (1990).

    PubMed  CAS  Google Scholar 

  108. S. Andrews, P. Arosio, W. Botteke, et al., Structure, function, and evolution of ferritins, J. Inorg. Biochem. 47, 161–174 (1992).

    PubMed  CAS  Google Scholar 

  109. P. Harrison and P. Arosio, The ferritins: molecular properties, iron storage function and cellular regulation, Biochem. Biophys. Acta 1275, 161–203 (1996).

    PubMed  Google Scholar 

  110. A. Thomson, J. Roger, and P. Leedman, Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation, Int. J. Biochem. Cell. Biol. 31, 1139–1152 (1999).

    PubMed  CAS  Google Scholar 

  111. A. Treffry, P. Harrison, M. Cleton, et al., A note on the composition and properties of ferritin iron cores, J. Inorg. Biochem. 31, 1–6 (1987).

    PubMed  CAS  Google Scholar 

  112. S. Andrews, M. Brady, A. Treffry, et al., Studies on haemosiderin and ferritin from ironloaded rat liver, Biol. Met. 1, 33–42 (1988).

    PubMed  CAS  Google Scholar 

  113. D. De Silva, J. Guo, and S. Aust, Relationship between iron and phosphate in mammalian ferritins, Arch. Biochem. Biophys. 303, 451–455 (1993).

    PubMed  Google Scholar 

  114. N. Chasteen and P. Harrison, Mineralization in ferritin: an efficient means of iron storage, J. Struct. Biol. 126, 182–194 (1999).

    PubMed  CAS  Google Scholar 

  115. A. Treffry and P. Harrison, Non-random distribution of iron entering rat liver ferritin in vivo, Biochem. J. 220, 857–859 (1984).

    PubMed  CAS  Google Scholar 

  116. D. De Silva and S. Aust, Stoichiometry of Fe(II) oxidation during ceruloplasmin-catalyzed loading of ferritin, Arch. Biochem. Biophys. 298, 259–264 (1992).

    PubMed  Google Scholar 

  117. S. Levi, S. Yewdall, P. Harrison, et al., Evidence of H- and L-chains have co-operative roles in the iron uptake mechanism of human ferritin, Biochemistry 288, 591–596 (1992).

    CAS  Google Scholar 

  118. E. Bauminger, P. Harrison, D. Hechel, et al., Iron (II) oxidation and early intermediates on iron-core formation in recombinant human H-chain ferritin, Biochem. J. 296, 709–719 (1993).

    PubMed  CAS  Google Scholar 

  119. P. Harrison, A. Treffry, and T. Lilley, Ferritin as an iron-storage protein: mechanisms of iron uptake, J. Inorg. Biochem. 27, 287–293 (1986).

    PubMed  CAS  Google Scholar 

  120. P. Santambrogio, S. Levi, A. Crozzi, et al., Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres, Biochem. J. 314, 139–144 (1996).

    PubMed  CAS  Google Scholar 

  121. M. Weir, J. Gibson, and T. Peters, Biochemical studies on the isolation and characterization of human spleen haemosiderin, Biochem. J. 223, 31–38 (1984).

    PubMed  CAS  Google Scholar 

  122. M. Weir, G. Sharp, and T. Peters, Electron microscopic studies of human haemosiderin and ferritin, J. Clin. Pathol. 38, 915–918 (1985).

    PubMed  CAS  Google Scholar 

  123. C. Finch, K. Deubelbliss, J. Cook, et al., Ferrokinetics in man, Medicine 49, 17–53 (1970).

    PubMed  CAS  Google Scholar 

  124. A. Rosenmund, S. Gerber, H. Huebers, et al., Regulation of iron absorption and storage iron turnover, Blood 56, 30–37 (1980).

    PubMed  CAS  Google Scholar 

  125. C. Finch and H. Huebers, Iron metabolism, Clin. Physiol. Biochem. 4, 5–10 (1986).

    PubMed  CAS  Google Scholar 

  126. H. Huebers and C. Finch, Transferrin: physiologic behavior and clinical implications, Blood 64, 763–767 (1984).

    PubMed  CAS  Google Scholar 

  127. M. Cazzola, H. Huebers, M. Sayers, et al., Transferrin saturation, plasma iron turnover, and transferrin uptake in normal humans, Blood 66, 935–939 (1985).

    PubMed  CAS  Google Scholar 

  128. S. Margen and J. King, Effect of oral contraceptive agents on the metabolism of some trace minerals, Am. J. Clin. Nutr. 28, 392–402 (1975).

    PubMed  CAS  Google Scholar 

  129. J. Guillebaud, M. Barnett, and Y. Gordon, Plasma ferritin levels as an index of iron deficiency in women using intrauterine devices, Br. J. Obstet. Gynaecol. 86, 51–55 (1979).

    PubMed  CAS  Google Scholar 

  130. E. Frassinelli-Gunderson, S. Margen, and J. Brown, Iron stores in users of oral contraceptive agents, Am. J. Clin. Nutr. 41, 703–712 (1985).

    PubMed  CAS  Google Scholar 

  131. A. Kivijarvi, H. Timonen, A. Rajamaki, et al., Iron deficiency in women using modern cooper intrauterine devices, Obstet. Gynecol. 67, 95–98 (1986).

    PubMed  CAS  Google Scholar 

  132. M. Sayers, G. English, and C. Finch, Capacity of the store-regulator in maintaining iron balance, Am. J. Hematol. 47, 194–197 (1994).

    PubMed  CAS  Google Scholar 

  133. A. McClelland, L. Kuhn, and F. Ruddle, The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence, Cell 39, 267–274 (1987).

    Google Scholar 

  134. S. Jing and I. Trowbridge, Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site, EMBO J. 6, 327–331 (1987).

    PubMed  CAS  Google Scholar 

  135. B. Iacopetta, E. Morgan, and G. Yeoh, Transferrin receptors and iron uptake during erythroid cell development, Biochim. Biophys. Acta 687, 204–210.

  136. B. Iacopetta, and E. Morgan, The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes, J. Biol. Chem. 258, 9108–9115 (1983).

    PubMed  CAS  Google Scholar 

  137. S. Young, A. Bomford, and R. Williams, The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes, Biochem. J. 219, 505–510 (1984).

    PubMed  CAS  Google Scholar 

  138. B. Callus, B. Iacopetta, L. Kuhn, et al., Effects of overexpression of the transferrin receptor on the rates of transferrin recycling and uptake of non-transferrin-bound iron, Eur. J. Biochem. 238, 463–469 (1996).

    PubMed  CAS  Google Scholar 

  139. B. Iacopetta and E. Morgan, Transferrin endocytosis and iron uptake during erythroid cell development, Biomed. Biochim. Acta 42, 182–186 (1983).

    CAS  Google Scholar 

  140. S. Paterson, N. Armstrong, B. Iacopetta, et al., Intravesicular pH and iron uptake by immature erythroid cells, J. Cell. Physiol. 120, 225–232 (1984).

    PubMed  CAS  Google Scholar 

  141. S. Rothenberger, B. Iacopetta, and L. Kuhn, Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site, Cell 49, 423–431 (1987).

    PubMed  CAS  Google Scholar 

  142. B. Iacopetta, S. Rothenberger, and L. Kuhn, A role for the cytoplasmic domain in transferrin receptor sorting and coated pit formation during endocytosis, Cell 54, 485–489 (1988).

    PubMed  CAS  Google Scholar 

  143. M. Nuñez, V. Gaete, J. Watkins, et al., Mobilization of iron from endocytic vesicles. The effects of acidification and reduction, J. Biol. Chem. 265, 6688–6692 (1990).

    PubMed  Google Scholar 

  144. P. Bali, O. Zak, and P. Aisen, A new role for the transferrin receptor in the release of iron from transferrin, Biochemistry 30, 324–328 (1991).

    PubMed  CAS  Google Scholar 

  145. V. Gaete, M. Nuñez, and J. Glass, Cl, Na+, and H+ fluxes during the acidification of rabbit reticulocyte endocytic vesicles, J. Bioenerg. Biomembr. 23, 147–160 (1991).

    PubMed  CAS  Google Scholar 

  146. J. Watkins, M. Nuñez, V. Gaete, et al., Kinetics of iron passage through subcellular compartments of rabbit reticulocytes, J. Membr. Biol. 119, 141–149 (1991).

    PubMed  CAS  Google Scholar 

  147. P. Bali and P. Aisen, Receptor-induced switch in site-site cooperativity during iron release by transferrin, Biochemistry 31, 3963–3967 (1992).

    PubMed  CAS  Google Scholar 

  148. A. Escobar, V. Gaete, and M. Nuñez, Effect of ascorbate in the reduction of transferrin-associated iron in endocytic vesicles, J. Bioenerg. Biomembr. 24, 227–233 (1992).

    PubMed  CAS  Google Scholar 

  149. T. Egan, O. Zak, and P. Aisen, The anion requirement for iron release from transferrin is preserved in the receptor-transferrin complex, Biochemistry 32, 8162–8167 (1993).

    PubMed  CAS  Google Scholar 

  150. B. Scheiber and H. Goldenberg, NAD(P)H: ferric iron reductase in endosomal membranes from rat liver, Arch. Biochem. Biophys. 305, 225–230 (1993).

    PubMed  CAS  Google Scholar 

  151. H. Marques, T. Walton, and T. Egan, Release of iron from C-terminal monoferric transferrin to phosphate and pyrophosphate at pH 5.5 proceeds through two pathways, J. Inorg. Biochem. 57, 11–21 (1995).

    PubMed  CAS  Google Scholar 

  152. J. Schonhorn, T. Akompong, and M. Wessling-Resnick, Mechanism of transferrin receptor down-regulation in K562 cells in response to protein kinase C activation, J. Biochem. 270, 3698–3705 (1995).

    CAS  Google Scholar 

  153. S. Young, S. Roberts, and A. Bomford, Intracellular processing of transferrin and iron by isolated rat hepatocytes, Biochemistry 232, 819–823 (1985).

    CAS  Google Scholar 

  154. E. Mattia, D. Josic, G. Ashwell, et al., Regulation of intracellular iron distribution in K562 human erythroleukemia cells. J. Biol. Chem. 261, 4587–4593 (1986).

    PubMed  CAS  Google Scholar 

  155. D. Richardson and E. Baker, Intermediate steps in cellular iron uptake from transferrin. Detection of a cytoplasmic pool of iron, free of transferrin, J. Biol. Chem. 267, 21,384–21,389 (1992).

    CAS  Google Scholar 

  156. C. Li, J. Watkins, S. Hamazaki, et al., Iron binding, a new function for the reticulocyte endosome H(+)-ATPase, Biochemistry 34, 5130–5136 (1995).

    PubMed  CAS  Google Scholar 

  157. B. Mayer, M. John, B. Heinzel, et al., Brain nitric oxide synthases is a biopterin- and flavin-containing multi-functional oxido-reductase, FEBS Lett. 288, 187–191 (1991).

    PubMed  CAS  Google Scholar 

  158. D. Stuehr and M. Ikeda-Saito, Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemoproteins that contain a flavin semiquinone radical, J. Biol. Chem. 267, 20,547–20,550 (1992).

    CAS  Google Scholar 

  159. R. Gibson, Principles of Nutritional Assessment, Oxford University Press, New York (1990).

    Google Scholar 

  160. J. Henry, Hematology and coagulation, in Todd-Sanford-Davidsohn: Clinical Diagnosis and Management by Laboratory Methods, 17th ed., WB Saunders, Philadelphia (1988).

    Google Scholar 

  161. B. Ferguson, B. Skikne, K. Simpsom, et al., Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia, J. Lab. Clin. Med. 119, 385–390 (1992).

    PubMed  CAS  Google Scholar 

  162. S. Kuvibidila, L. Yu, D. Ode, et al., Assessment of iron status of Zairean women of childbearing age by serum transferrin receptor, Am. J. Clin. Nutr. 60, 603–609 (1994).

    PubMed  CAS  Google Scholar 

  163. U. Rusia, C. Flowers, N. Madan, et al., Serum transferrin receptors in detection of iron deficiency in pregnancy, Ann. Hematol. 78, 358–363 (1999).

    PubMed  CAS  Google Scholar 

  164. V. Herbert, The 1986 Herman Award Lecture. Nutrition science as a continually unfolding story: the folate and vitamin B12 paradigm, Am. J. Clin. Nutr. 46, 387–402 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccio, J., Salgueiro, J., Lysionek, A. et al. Current knowledge of iron metabolism. Biol Trace Elem Res 92, 189–211 (2003). https://doi.org/10.1385/BTER:92:3:189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:3:189

Index Entries

Navigation