Skip to main content
Log in

On the interaction of the vanadyl(IV) cation with lactose

Inhibition effects of vanadyl(IV)/monosaccharide and disaccharide complexes upon alkaline phosphatase activity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A new vanadyl(IV) complex of the disaccharide lactose was obtained in aqueous solution at pH=13. The sodium salt of the complex, of composition Na4[VO(lactose)2]·3H2O, has been characterized by elemental analysis and by ultraviolet-visible, diffuse reflectance, and infrared spectroscopies. Its magnetic susceptibility and thermal behavior were also investigated. The inhibitory effect on alkaline phosphatase activity was tested for this compound as well as for the vanadyl(IV) complexes with maltose, sucrose, glucose, fructose, and galactose. For comparative purposes, the free ligands and the vanadyl(IV) cation were also studied. The free sugars and the sucrose/VO complex exhibited the lowest inhibitory effect. Lactose-VO, maltose-VO, and the free VO2+ cation showed an intermediate inhibition potential, whereas the monosaccharide/VO complexes appeared as the most potent inhibitory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sigel and A. Sigel, eds., Metal Ions in Biological Systems, Vol. 31. Vanadium and its Role in Life, Marcel Dekker, New York (1995).

    Google Scholar 

  2. E. J. Baran, Los “nuevos” bioelementos. Realidad y especulaciones, Anal. Soc. Cientif. Argent. 228, 61–74 (1998).

    Google Scholar 

  3. C. Slebodnick, B. J. Hamstra, and V. L. Pecoraro, Modeling the biological chemistry of vanadium: structural and reactivity studies elucidating biological function, Struct. Bonding 89, 51–107 (1997).

    CAS  Google Scholar 

  4. E. J. Baran, Oxovanadium (IV) and oxovanadium (V) complexes relevant to biological systems, J. Inorg. Biochem. 80, 1–10 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. E. J. Baran, Model studies related to vanadium metabolism, Bol. Soc. Chil. Quim. 42, 247–256 (1997).

    CAS  Google Scholar 

  6. E. J. Baran, Vanadium detoxification, In Vanadium in the Environment, J. O. Nriagu, ed. Wiley, New York, Part 2, pp. 317–345 (1998).

    Google Scholar 

  7. R. P. Bandwar and C. P. Rao, Relative reducing activities in vitro of some hydroxycontaining compounds, including monosaccharides, towards vanadium (V) and molybdenum (VI), Carbohydr. Res. 277, 197–207 (1995).

    Article  CAS  Google Scholar 

  8. A. Sreedhara, N. Susa, A. Patwardhan, and C. P. Rao, One electron reduction of vanadate (V) to oxovanadium (IV) by low-molecular-weight biocomponents like saccharides and ascorbic acid: effects of oxovanadium (IV), Biochem. Biophys. Res. Commun. 224, 115–120 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. A. Sreedhara, N. Susa, and C. P. Rao, Vanadate and chromate reduction by saccharides and l-ascorbic acid: effect of isolated V (IV) and Cr (III) products on DNA nicking, lipid peroxidation, cytotoxicity and on enzymatic and non-enzymatic antioxidants Inorg. Chim. Acta 263, 189–194 (1997).

    Article  CAS  Google Scholar 

  10. E. J. Baran, Carbohydr. Chem, in press.

  11. A. M. Cortizo and S. B. Etcheverry, Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells, Mol. Cell Biochem. 145, 97–102 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. E. J. Baran, La nueva farmacoterapia inorgánica. XVII. Compuestos de vanadio, Acta Farm. Bonaerense 16, 43–52 (1997).

    CAS  Google Scholar 

  13. K. H. Thompson, J. H. McNeill, and C. Orvig, Vanadium compounds as insulin mimics, Chem. Rev. 99, 2561–2571 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. K. H. Thompson and C. Orvig, Design of vanadium compounds as insulin enhancing agents, J. Chem. Soc. Dalton Trans. 2885–2892 (2000).

  15. S. B. Etcheverry, P. A. M. Williams, and E. J. Baran, Synthesis and characterization of oxovanadium(IV) complexes with saccharides, Carbohydr. Res., 302, 131–138 (1997).

    Article  CAS  Google Scholar 

  16. P. A. M. Williams, S. B. Etcheverry, and E. J. Baran, Characterization of new oxovanadium (IV) complexes of saccharides, Carbohydr. Res. 329, 41–47 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. H. Onishi, Photometric Determination of Traces of Metals, 4th edit. Wiley, New York, Part IIB, pp. 674–676 (1989).

    Google Scholar 

  18. H. G. Seiler, A. Sigel, and H. Sigel, eds., Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York, p. 573 (1994).

    Google Scholar 

  19. J. Selbin, The chemistry of oxovanadium (IV), Chem. Rev. 65, 153–175 (1965).

    Article  CAS  Google Scholar 

  20. A. Syamal, Spin-spin coupling in oxovanadium (IV) complexes, Coord. Chem. Rev. 16, 309–339 (1975).

    Article  CAS  Google Scholar 

  21. E. J. Baran, J. Coord. Chem., in press.

  22. P. D. Vasko, J. Blackwell, and J. L. Koenig, Infrared and Raman spectroscopy of carbohydrates. Part I: identification of O-H and C-H-related vibrational modes for d-glucose, maltose, cellobiose, and dextran by deuterium substitution methods, Carbohydr. Res. 19, 297–310 (1971).

    Article  CAS  Google Scholar 

  23. J. J. Cael, J. L. Koenig, and J. Blackwell, Infrared and Raman spectroscopy of carbohydrates. Part IV: identification of configuration- and configuration-sensitive modes for d-glucose by normal coordinate analysis, Carbohydr. Res. 32, 79–91 (1974).

    Article  CAS  Google Scholar 

  24. H. Susi and J. S. Ard, Laser-Raman spectra of lactose, Carbohydr. Res. 37, 351–354 (1974).

    Article  CAS  Google Scholar 

  25. V. M. Tul’chinsky, S. E. Zurabyan, K. A. Asankozhoev, G. A. Kogan, and A. Ya. Khorlin, Study of the infrared spectra of oligosaccharides in the region 1000-40 cm−1, Carbohydr. Res. 51, 1–8 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. M. Mathlouthi and J. L. Koenig, Vibrational spectra of carbohydrates Adv. Carbohydr. Chem. Biochem. 44, 7–89 (1986).

    Article  CAS  Google Scholar 

  27. F. S. Parker, Applications of Infrared, Raman and Resonance Raman Spectroscopy in Biochemistry, Plenum, New York (1983).

    Google Scholar 

  28. I. Bertini and C. Luchinat, An insight on the active site of zinc enzymes through metal substitution, in Metal Ions in Biological Systems, H. Sigel, ed., M. Dekker, New York Vol. 15, pp. 101–156 (1983).

    Google Scholar 

  29. D. M. Whitfield, S. Stojkovski, and B. Sarkar, Metal coordination to carbohydrates. Structure and function, Coord. Chem. Rev. 122, 171–225 (1993).

    Article  CAS  Google Scholar 

  30. R. P., Bandwar, M. S. S. Raghavan, and C. P. Rao, Transition-metal saccharide chemistry: d-glucose complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), Biometals 8, 19–24 (1995).

    Article  CAS  Google Scholar 

  31. K. Kustin, Perspectives in vanadium biochemistry, in Vanadium Compounds: Chemistry, Biochemistry and Therapeutic Applications, A. S. Tracey and D. C. Crans, eds., ACS Symposium Series 711, American Chemical Society, Washington, DC, pp. 170–185 (1998).

    Google Scholar 

  32. C. V. Grant, K. M. Geiser-Busch, C. R. Cornman, and R. D. Britt, Probing the molecular geometry of five-coordinate vanadyl complexes with pulsed ENDOR, Inorg. Chem. 38, 6285–6288 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etcheverry, S.B., Barrio, D.A., Williams, P.A.M. et al. On the interaction of the vanadyl(IV) cation with lactose. Biol Trace Elem Res 84, 227–238 (2001). https://doi.org/10.1385/BTER:84:1-3:227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:84:1-3:227

Index Entries

Navigation