Skip to main content
Log in

Effects of ingestion of cadmium-polluted rice or low-dose cadmium-supplemented diet on the endogenous metal balance in female rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of endogenous metal ions in liver, kidney, and bone tissues of female rats were measured after ingestion of cadmium-polluted rice (1.24 ppm as Cd) or cadmium-supplemented rice (1.24 and 4.96 ppm) for 2 or 4 mo. The metal accumulated mainly in the kidneys and in the liver. The concentration of cadmium (Cd) in the kidneys of rats fed a 1.24-ppm Cd-supplemented diet was significantly higher than in the Cd-polluted rice group.

After 2 mo, the levels of iron and sodium in the liver were elevated in the Cd-polluted rice group, but not in the 1.24-ppm Cd-supplemented group, as compared to controls. The zinc concentration in the Cd-polluted rice group was decreased. The concentration of copper in the kidneys was increased for all Cd-containing diet groups. After 4 mo, the effects of Cd on essential metals in the Cd-polluted and 1.24-ppm Cd-supplemented groups had almost disappeared, although several metal ions in selected organs in the 4.96-ppm Cd-supplemented group showed more prominent changes than in the group exposed for 2 mo.

These results suggest that the effects of short-term exposure to Cd on essential metal balance are stronger for rice-bound Cd than for inorganic Cd, although the absorption rate of Cd in Cd-polluted rice may be lower than that of cadmium chloride added to rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Cadmium, Environ. Health Criteria 134, 67–130 (1922).

    Google Scholar 

  2. L. Friberg, M. Piscator, G. Nordberg, and T. Kjellstroem, Cadmium in the Environment, 2nd ed., CRC, Cleveland, OH (1974).

    Google Scholar 

  3. E. L. Gunderson, FDA total diet study, April 1982 – April 1984, dietary intakes of pesticides selscted elements, and other chemicals, J. Assoc. Off. Anal. Chem. 71, 1200–1209 (1988).

    PubMed  CAS  Google Scholar 

  4. E. L. Gunderson, Dietary intakes of pesticide, selected elements, and other chemicals: FDA total diet study, June 1984–April 1986, J. AOAC Int. 78, 910–921 (1995).

    PubMed  CAS  Google Scholar 

  5. E. L. Gunderson, FDA total diet study, July 1986 – April 1991, dietary intakes of pesticides selscted elements, and other chemicals, J. AOAC Int. 78, 1353–1363 (1995).

    PubMed  CAS  Google Scholar 

  6. D. L. MacIntosh, J. D. Spengler, H. Oekaynak, L. Tsai, and P. B. Ryan, Dietary exposures to selected metals and pesticides, Environ. Health Perspect. 104, 202–209 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. T. Tsuda, T. Inoue, M. Kojima, and A. Aoki, Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults, J. AOAC Int. 78, 1363–1368 (1995).

    PubMed  CAS  Google Scholar 

  8. I. F. Rivai, H. Koyama, and S. Suzuki, Cadmium content in rice and its daily intake in various countries, Bull. Environ. Contam. Toxicol. 44, 910–916 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. N. Herawati, S. Suzuki, K. Hayashi, I. F. Rivai, and H. Koyama, Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type, Bull. Environ. Contam. Toxicol. 64, 33–39 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. Food Agency of Japan, On the results of cadmium levels in rice, Press release (March 28, 2000).

  11. K. Nomiyama, Recent progress and perspectives in cadmium health effect studies, Sci. Total Environ. 14, 199–232 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. C. F. Mills and A. C. Dalgarno, Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium, Nature 239, 171–173 (1972).

    Article  PubMed  CAS  Google Scholar 

  13. I. Bremner, Heavy metal toxicities, Q. Rev. Biophys. 7, 75–124 (1974).

    PubMed  CAS  Google Scholar 

  14. M. D. Stonard and M. Webb, Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rats, Chem.-Biol. Interact. 15, 349–363 (1976).

    Article  PubMed  CAS  Google Scholar 

  15. E. Prigge, Early signs of oral and inhalative cadmium uptake in rats, Arch. Toxicol. 40, 231–247 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. M. Abdulla and J. Chmielnicka, New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals, Biol. Trace Element Res. 23, 25–53 (1990).

    Article  CAS  Google Scholar 

  17. L. Thijs, J. Staessen, A. Amery, P. Bruaux, J. P. Buchet, F. Claeys, et al., Determination of the serum zinc in a random population sample of four Belgian towns with different degrees of environmental exposure to cadmium, Environ. Health Perspect. 98, 251–258 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. S. Telisman, Interaction of essential and/or toxic metals and metalloids regarding interindividual differences in susceptibility to various toxicants and chronic diseases in man, Arch. Higijenu Rada Tokisikol. 45, 459–475 (1995).

    Google Scholar 

  19. H. J. Weigel, I. Elmadfa, and H. J. Jaeger, The effect of low doses of dietary cadmium oxide on the disposition of trace elements (zinc, copper, iron), hematological parameters, and liver function in rats, Arch. Environ. Contam. Toxicol. 13, 289–296 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. American Institute of Nutrition, Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies, J. Nutr. 107, 1340–1348 (1977).

    Google Scholar 

  21. M. Watanabe, K. Shiroisi, H. Nishino, T. Shinmura, H. Murase, T. Shoji, et al., An experimental study on the long-term effect of cadmium in mice fed cadmium-polluted rice with special reference to the effect of repeated reproductive cycles, Environ. Res. 40, 25–46 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. S. A. Gunn and T. C. Gould, Selective accumulation of 115Cd by cortex of rat kidney, Proc. Soc. Exp. Biol. Med. 96, 820–823 (1957).

    PubMed  CAS  Google Scholar 

  23. L. Friberg, G. F. Nordberg, and V. D. Vouk, eds., Handbook on the Toxicology of Metals, Elsevier/North-Holland Biomedical, Amsterdam (1986).

    Google Scholar 

  24. B. D. Whelton, D. P. Peterson, E. S. Moretti, R. W. Mauser, and M. H. Bhattacharyys, Hepatic levels of cadmium, zinc, iron, and copper in multiparous, nulliparous and ovariectomized mice fed either nutrient-sufficient or -deficient diet containing cadmium, Toxicology 119, 141–153 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. M. Kaneta, H. Hikichi, S. Endo, and N. Sugyyama, Chemical form of cadmium (and other heavy metals) in rice and wheat plants, Environ. Health Perspect. 65, 33–37 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. K. Kobashi, N. Nakai, J. Hase, T. Miyahara, H. Kozuka, and M. Fujii, Chemical forms of cadmium in cadmium-polluted rice. I. Binding properties of gluterin-cadmium complex, Eisei Kagaku 24, 314–321 (1978).

    CAS  Google Scholar 

  27. H. Ohta and M. G. Cherian, The influence of nutritional deficiencies on gastrointestinal uptake of cadmium and cadmium-metallothionein in rats, Toxicology 97, 71–80 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. N. Sugawara and C. Sugawara, Gastrointestinal absorption of Cd-metallothionein and cadmium chloride in mice, Arch. Toxicol. 65, 689–692 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. H. J. Weigel, H. J. Jager, and I. Elmadfa, Cadmium accumulation in rat organs after extended oral administration with low concentrations of cadmium oxide, Arch. Environ. Contam Toxicol. 13, 279–287 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. K. T. Suzuki, K. Yaguchi, R. Ohnuki, M. Nishikawa, and Y. K. Yamada, Extent cadmium accumulation and its effect on essential metals in liver, kidney, and body fluid, J. Toxicol. Environ. Health 11, 713–726 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. R. C. Srivastava, I. Ahmad, G. Kaur, and S. K. Hasan, Alterations in the metabolism of endogenous trace metals due to cadmium, manganese and nickel-effect of partial hepatechtomy. J. Environ. Sci. Health A23, 95–101 (1988).

    Article  CAS  Google Scholar 

  32. Z. Z. Wahba and M. P. Waalkes, Cadmium-induced route-specific alterations in essential trace element homeostasis, Toxicol. Lett. 54, 77–81 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. S. Oishi, J. Nakagawa, and M. Ando, Effects of cadmium administration on the endogenous metal balance in rats, Biol. Trace Element Res. 76, 257–278 (2000).

    Article  CAS  Google Scholar 

  34. O. Wada, A, Miyahara, S, Manabe, H. Matsui, and T. Ono, Effect of acute administration of cadmium on distribution of zinc in the hamster, J. Toxicol. Environ. Health 9, 509–513 (1982).

    PubMed  CAS  Google Scholar 

  35. N, Sugawara, Influence of cadmium on zinc distribution in the mouse liver and kidney: role of metallothionein, Toxicol. Appl. Pharmacol. 42, 377–386 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. M. D. Stonard and M. Webb, Influence of dietary cadmium on the distribution of the essential metals copper, zinc, and iron in tissues of the rat, Chem.-Biol. Ineract. 15, 349–363 (1976).

    Article  CAS  Google Scholar 

  37. G, Matrone, Chemical parameters in trace-element antagonisms, in Trace Element Metabolism in Animals, W. G., Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertzeds, eds., University Park Press, Baltimore, MD, Vol. 2, pp. 91–103 (1974).

    Google Scholar 

  38. J. M. Davis and D. J. Svendsgaard, U-shaped dose-response curves: their occurrence and implications for risk assessment, J. Toxicol. Environ. Health 30, 71–83 (1990).

    PubMed  CAS  Google Scholar 

  39. F. S. Vom Saal, B. G. Timms, M. M. Montano, P. Palanza, K. A. Thayer, S. C. Nagel, et al., Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses, Proc. Natl. Acad. Sci. USA 94, 2056–2061 (1997).

    Article  Google Scholar 

  40. F. S. Vom Saal, P. S. Cooke, D. L. Buchanan, P. Palanza, K. A. Thayer, S. C. Nagel, et al., A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior, Toxicol Ind. Health 14, 239–260 (1998).

    Google Scholar 

  41. M. Torra, J. To-Figueras, M. Rodamilans, M. Brunet, and J. Corbella, Cadmium and zinc relationships in the liver and kidney of humans exposed to environmental cadmium, Sci. Total Environ. 170, 53–57 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. R. Honda and K. Nogawa, Cadmium, zinc and copper relationships in kidney and liver of humans exposed to environmental cadmium, Arch. Toxicol. 59, 437–442 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. N. Sugawara, C. Sugawara, and H. Miyake, Effects of subcutaneous and oral cadmium on iron metabolism: role of ceruloplasmin and metallothionein, Arch. Toxicol. 40, 231–247 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, S., Nakagawa, Ji. & Ando, M. Effects of ingestion of cadmium-polluted rice or low-dose cadmium-supplemented diet on the endogenous metal balance in female rats. Biol Trace Elem Res 84, 155–167 (2001). https://doi.org/10.1385/BTER:84:1-3:155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:84:1-3:155

Index Entries

Navigation