Skip to main content
Log in

A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Y. Kim and T. C. Stadtman, Inhibition of NF-kB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment, Proc. Natl. Acad. Sci. USA 94, 12,904–12,907 (1997).

    CAS  Google Scholar 

  2. S. W. May, L. Wang, M. M. Gill-Woznichak, et al., An orally active selenium-based antihypertensive agent with restricted CNS permeability, J. Pharmacol. Exp. Ther. 283(2), 470–477 (1997).

    PubMed  CAS  Google Scholar 

  3. J. A. Award, R. F. Burk, and L. J. Roberts II, Effect of selenium deficiency and glutathione-modulating agents on diquat toxicity and lipid peroxidation in rats, J. Pharmacol. Exp. Ther. 270(3), 858–864 (1994).

    Google Scholar 

  4. D. Behne, C. Weiss-Nowak, M. Kalcklosch, et al., Studies on the distribution and characteristics of new mammalian selenium-containing proteins, Analyst 120, 823–825 (1995).

    Article  CAS  Google Scholar 

  5. J. E. Spallholz, On the nature of selenium toxicity and carcinostatic activity. Free Radical Biol. Med. 17, 45–64 (1994).

    Article  CAS  Google Scholar 

  6. T. C. Stadtman, Biosynthesis and function of selenocysteine-containing enzymes, J. Biol. Chem. 266(25), 16,257–16,260 (1991).

    CAS  Google Scholar 

  7. B. Turan, O. Hotomaroglu, M. Kilic, and E. Demirel-Yilmaz, Cardiac dysfunction induced by low and high diet antioxidant levels comparing selenium and vitamin E in rats, Regulat. Tox. Pharmacol. 29, 142–150 (1999).

    Article  CAS  Google Scholar 

  8. B. Turan, N. Zaloglu, E. Koc, Y. Saran, and N. Akkas, Dietary selenium and vitamin E induced alterations in some rabbit tissues, Biol. Trace Element Res. 58(3–4), 237–253 (1997).

    Article  CAS  Google Scholar 

  9. R. J. Shamberger, Selenium deficiency diseases in animals, in Biochemistry of Selenium, Plenum, New York, pp. 31–58, (1983).

    Google Scholar 

  10. A. S. Prasad, Clinical biochemical and nutritional aspects of trace elements, Curr. Topics Nutr. Dis. 6, 345–349 (1982).

    Google Scholar 

  11. B. Venugopal and T. Luckey, Metal toxicity in mammals, in Toxicity of Group VI Metals and Metalloids, Plenum, New York, pp. 234–400, (1978).

    Google Scholar 

  12. X. Chen, G. Yang, J. Chen, X. Chen, Z. Wen, and K. Ge, Studies on the relationships of selenium and Keshan disease, Biol Trace Element Res. 2, 91–107 (1980).

    CAS  Google Scholar 

  13. J. Ringstad, P. M. Tande, G. Norheim, and H. Refsum, Selenium deficiency and cardiac electrophysiological and mechanical function in the rat, Pharmacol. Toxicol. 63, 189–192 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. J. A. Olson and S. Kobayoshi, Antioxidants in health and disease: overview, Proc. Soc. Exp. Biol. Med. 200, 245–247 (1992).

    PubMed  CAS  Google Scholar 

  15. J. D. Young, C. Crowley, and E. M. Tucker, Haemolysis of normal and glutathione-deficient sheep erythrocytes by selenite and tellurite, Biochem. Pharmacol. 30, 2527–2530 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. I. Anundi, J. Hogberg, and A. Stahl, Involvement of glutathione reductase in selenite metabolism and toxicity, studied in isolated rat hepatocytes, Arch. Toxicol. 50, 113–123 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. S. Y. Lin-Shiau, S. H. Liu, and W. M. Fu, Studies on the contracture of the mouse diaphragm induced by sodium selenite, Eur. J. Pharmacol. 167, 137–146 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. R. C. Dickson and A. L. Tappel, Reduction of selenocystine by cysteine or glutathione, Arch. Biochem. Biophys. 130, 547–550 (1969).

    Article  PubMed  CAS  Google Scholar 

  19. J. Hakkarainen, P. Lindberg, G. Bengtsson, L. Jonsson, and N. Lannek, Requirement for selenium (as selenite) and vitamin E (as a-tocopherol) in weaned pigs. III. The effect on the development of the VESD syndrome of varying selenium levels in a low-tocopherol diet, J. Anal. Sci. 46, 1001–1008 (1978).

    CAS  Google Scholar 

  20. J. R. Beetens, M. C. Coene, A. Veheyen, L. Zonnekeyn, and A. G. Herman, Vitamin C increases the prostacyclin production and decreases the vascular lesions in experimental atherosclerosis in rabbits, Prostaglandins 32, 335–352 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. E. Hayashi, J. Yamada, M. Kunitomo, M. Terada, and M. Sato, Fundemental studies on physiological and pharmacological actions of l-ascorbate 2-sulfate. V: On the hypolipidemic and antiatherosclerotic effects of l-ascorbate 2-sulfate in rabbits, Jpn. J. Pharmacol. 28, 61–72 (1978).

    PubMed  CAS  Google Scholar 

  22. J. Wojcicki, L. Rozewicka, B. Barcew-Wiszniewska, et al., Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits, Atherosclerosis 87, 9–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. M. M. Mahfouz, H. Kawano, and F. A. Kummerow, Effect of cholesterol-rich diets with and without added vitamins E and C on the severity of atherosclerosis in rabbits, Am. J. Clin. Nutr. 66, 1240–1249 (1997).

    PubMed  CAS  Google Scholar 

  24. N. L. Acan and E. F. Tezcan, Sheep brain glutathione reductase: purification and general properties, FEBS Lett. 250, 72–74 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. 71, 952–958 (1976).

    Article  CAS  Google Scholar 

  26. J. Sedlak and R. H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  27. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein in tissue with Ellman’s reagent, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. H. E. Ganther, Pathways of selenium metabolism including respiratory excretory products, J. Am. Coll. Toxicol. 5, 1–5 (1986).

    CAS  Google Scholar 

  29. J. T. Sword, A. I. Pope, and W. G. Hoekstra, Endotoxin and lipid peroxidation in vitro in selenium- and vitamin E-deficient and -adequate rat tissues, J. Nutr. 121, 258–264 (1991).

    PubMed  CAS  Google Scholar 

  30. J. T. Sword, A. I. Pope, and W. G. Hoekstra, Endotoxin and lipid peroxidation in vivo in selenium- and vitaminE-deficient and -adequate rats, J. Nutr. 121, 251–257 (1991).

    PubMed  CAS  Google Scholar 

  31. D. D. Maag and M. W. Glenn, Toxicity of selenium: farm animals, in Selenium in Biomedicine: A Symposium, O. H. Muth, J. E. Oldfield, and P. H. Weswig, eds., AVI, Westport, CT, pp. 109–123, (1967).

    Google Scholar 

  32. S. A. Hopper, A. Greig, and C. H. McMurray, Selenium poisoining in lambs, Vet. Rec. 116, 569–571 (1985).

    PubMed  CAS  Google Scholar 

  33. J. B. A. Smyth, J. H. Wang, R. M. Barlow, D. J. Humphreys, M. Robins, and J. B. J. Stodulski, Experimental acute selenium intoxication in lambs, J. Compar. Pathol. 102, 197–209 (1990).

    CAS  Google Scholar 

  34. G. Danscher, Exogenous selenium in the brain, Histochemistry 76, 281–293 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. N. N. Ulusu, N. L. Acan, B. Turan, and E. F. Tezcan, The effect of selenium on glutathione redox cycle enzymes of some rabbit tissues, Trace Element Electrolytes 17(1), 25–29 (2000).

    CAS  Google Scholar 

  36. L. D. Koller and J. H. Exon, The two faces of selenium-deficiency and toxicity—are similar in animal and man, Can. J. Vet. Res. 50, 297–306 (1986).

    PubMed  CAS  Google Scholar 

  37. O. A. Levander, Selenium, in Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic, New York, pp. 209–279, (1986).

    Google Scholar 

  38. K. Ytrehus, J. Ringstad, R. Myklebust, G. Norheim, and O. D. Mjos, The selenium-deficient rar heart with special reference to tolerance against enzymatically generated oxygen radicals, Scand. J. Clin. Lab. Invest. 48, 289–295 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. K. H. Konz, M. Haap, K. K. Hill, R. F. Burk, and R. A. Walsh, Diastolic dysfunction of perfused rat hearts induced by hydrogen peroxide. Protective effect of selenium, J. Mol. Cell. Cardiol. 21, 789–795 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turan, B., Acan, N.L., Ulusu, N.N. et al. A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues. Biol Trace Elem Res 81, 141–152 (2001). https://doi.org/10.1385/BTER:81:2:141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:81:2:141

Index Entries

Navigation