Skip to main content
Log in

Effect of vanadium compounds on the lipid organization of liposomes and cell membranes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The influence of vanadate on the adsorption properties of Merocyanine 540 (MC540) to UMR cells was studied by means of specrofluorometry. An increment in the fluorescence was observed in the osteoblasts incubated with 0.1 mM vanadate. This effect could be interpreted in terms of vanadate inhibitory effects on aminotraslocase activity. However, vanadate promotes a similar behavior to that found in UMR 106 cells when it was added to lipid vesicles composed of phosphatidylcholine. The effect of vanadium in different oxidation states, such as vanadate(V) and vanadyl(IV) on lipid membrane properties was examined in large unilamellar vesicles by means of spectrofluorometry employing different probes. Merocyanine 540 and 1,6-diphenylhexatriene were used in order to sense the changes at interfacial and hydrophobic core of membranes, respectively. In contrast to vanadate, vanadyl decreased the fluorescence of MC540. Both vanadium compounds slightly perturbed the hydrocarbon core. The results can be interpreted by the specific adsorption of both compounds on the polar head groups of phospholipid and suggest a possible influence of vanadium compounds on the lipid organization of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Nielsen and E. C. Uthus, The essentiality and metabolism of vanadium, in Vanadium in Biological Systems. N. D. Chasteen, ed., Kluwer Academic, Dordrecht, pp. 51–62 (1990).

    Google Scholar 

  2. S. B. Etcheverry and A. M. Cortizo, Bioactivity of vanadium compounds on cells in culture, in Vanadium in the Environment Part 1: Chemistry and Biochemistry, Wiley, New York, Vol. 15, pp. 359–393 (1998).

    Google Scholar 

  3. A. M. Cortizo and S. B. Etcheverry, Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells, Mol. Cell. Biochem. 145, 97–102 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. S. B. Etcheverry, D. C. Crans, A. D. Keramidas, and A. M. Cortizo, Insulin-mimetic action of vanadium compounds on osteoblastic like cells in culture, Arch. Biochem. Biophys. 338, 7–14 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. A. Stern, X. Yin, S. S. Tsang, A. Davison, and T. Moon, Vanadium as a modulator of cellular regulatory cascades and oncogene expresion, Biochem. Cell. Biol. 71, 103–112 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. P. Lonnroth, J. W. Erkson, B. I. Poner, and U. Smith, Peroxovanadate but not vanadate exert insulin-like effect in human adipocytes, Diabetologia 36, 113–116 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. R. W. Zhang, D. J. Simmons, R. S. Crowther, S. Mohan, and D. J. Baylink, Contribution of marrow stroma cells to the regulation of osteoblast proliferations in rats: evidence for the involvement of insulin-like growth factors, Bone Miner. 13, 201–215 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. B. R. Nechay, L. B. Nanninga, and P. S. Nechay, Vanadyl (IV) and Vanadate (V) binding to selected endogenous phospholipid carboxyl and amino ligands: calculation of cellular vanadium species distribution, Arch. Biochem. Biophys 51, 128–138 (1986).

    Article  Google Scholar 

  9. D. C. Crans, R. L. Bunch, and L. A. Theisen, Interaction of trace levels of vanadium (IV) and vanadium (V) in biological systems, J. Am. Chem. Soc. 111, 7597–7607 (1989).

    Article  CAS  Google Scholar 

  10. D. C. Crans, Interaction of trace levels of vanadium(IV) and vanadium (IV) in biological systems, Commun. Inorg. Chem. 16, 1–33 (1994).

    CAS  Google Scholar 

  11. E. J. Baran, Vanadyl (IV) complexes of nucleotides, in Metal Ions in Biological System, H. Sigel and A. Sigel (eds.), Dekker, New York, pp. 129–146 (1995).

    Google Scholar 

  12. R. Mac Donald, R. I. Mac Donald, B. M. Menco, K. Takeshita, N. Subbarao, and L. Hu, Small-volume extrusion apparatus for preparation of large unilamellar vesicles, Biochim. Biophys. Acta 858, 161–168 (1986).

    Article  Google Scholar 

  13. A. S. Verkman, Mechanism and kinetics of MC 540 binding to phospholipid membranes, Biochemistry 26, 4050–4056 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. M. Schinitzky and Y. Barenholz, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 519, 367–394 (1978).

    Google Scholar 

  15. J. E. Valinsky, T. G. Easton, and E. Reich, Morocyanine 540 as a fluorescence probe of membrane selective staining of leukemic and immature haemopoietic cells, Cells 13, 487–499 (1978).

    Article  CAS  Google Scholar 

  16. G. Dodin and J. Dupont, Thermodynamics and kinetics of the interactions of MC540 with hydrophobic structures. Binding of MC540 to soy beam phosphatidylcholine oligolamellar liposomes and to mitochondria, J. Phys. Chem. 91, 6322–6326 (1987).

    Article  CAS  Google Scholar 

  17. W. Stillwell, S. R. Wassall, A. C. Dumaual, W. D. Ehringer, C. W. Browning, and L. J. Jenski, Use of Merocyanine 540 (MC540) in quantifying lipid domains and packing in phospholipid vesicles and tumor cells, Biochim. Biophys. Acta 1146, 136–144 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. L. C. Cantley, M. D. Resh, and G. Guidoti, Vanadate inhibits the red cells Na-K ATPase from the cytoplasmic side, Nature 272, 552–554 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. A. Zachowski, E. Favre, S. Cribier, P. Herve, and P. Devaux, Outside-inside translocation of aminophospholipid in the human erythrocyte membrane is mediated by a specific enzyme, Biochemistry 25, 2585–2590 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. D. L. Daleke and W. Huestis, Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids, J. Cell Biol. 158, 1375–1385 (1989).

    Article  Google Scholar 

  21. J. A. F. Op. Den Kamp, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48, 47–71 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. E. A. Disalvo and L. S. Bakas, Influence of the surface charge distribution and water layers on the permeability properties of lipid bilayers, in The Electrical Double Layer in Biology, M. Blank, ed., Plenum, New York, pp. 63–76 (1985).

    Google Scholar 

  23. L. S. Bakas and E. A. Disalvo, Asymmetric effect of the Ca+2 adsorption on the sonicated vesicles bilayers, Biochim. Biophys. Acta 979, 352–360 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. J. Lackowicz, Principles of Fluorescence Spectroscopy, Plenum New York, pp. 357–359 (1984).

    Google Scholar 

  25. D. C. Crans, E. M. Willging, and S. R. Butler, Vanadate tetramer as the inhibiting species in enzymes reactions in vitro and in vivo. J. Am. Chem. Soc. 112, 427–432 (1990).

    Article  CAS  Google Scholar 

  26. D. A. Barrio, M. D. Braziunas, S. B. Etcheverry, and A. M. Cortizo, Maltol complexes of vanadium (IV) and (V) regulate the alkaline phosphatase activity and the osteoblast-like cell growth, J. Trace Elements Med. Biol. 11, 110–115 (1997).

    CAS  Google Scholar 

  27. V. C. Sálice, A. M. Cortizo, C. L. Gómez Dumm, and S. B. Etcheverry, Tyrosine phosphorylation and morphological transformation induced by four vanadium compounds on MC3T3E1 cells, Mol. Cell. Biochem. 198, 119–128 (1999).

    Article  Google Scholar 

  28. A. M. Cortizo, L. Bruzzone, S. Molinuevo, and S. B. Etcheverry, A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines, Toxicology, 147, 88–99 (2000).

    Article  Google Scholar 

  29. S. Verna, M. C. Can, and J. H. McNeill, Nutritional factors that favorably influence the glucose/insulin system: vanadium, J. Am. Coll. Nutr. 17, 11–18 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakás, L., Verza, G. & Cortizo, A. Effect of vanadium compounds on the lipid organization of liposomes and cell membranes. Biol Trace Elem Res 80, 269–279 (2001). https://doi.org/10.1385/BTER:80:3:269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:3:269

Index Entries

Navigation