Skip to main content
Log in

Mucosal uptake and whole-body retention of dietary manganese are not altered in β2-microglobulin knockout mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To further examine the interrelationships between manganese and iron absorption, the mucosal uptake, initial rate of loss, wholebody retention, and tissue distribution of an orally administered 54Mn radiotracer were compared between normal and β2-microglobulin knockout [β2m(-/-)] mice. These mutant mice are commonly used as a model for the study of human hemochromatosis, a hereditary ironoverload disease. Initial uptake of 54Mn by the intestinal mucosa, the liver, and the brain was not different between the two strains. The mutant mice had much higher concentrations of nonheme and total iron in the liver, but hepatic manganese, copper, magnesium, and zinc concentrations were similar between the two strains. In summary, the mucosal uptake and whole-body retention of manganese and tissue manganese concentrations were not altered in β2m(-/-) mice; this suggests that normal homeostasis of manganese is not affected by the altered HFE protein-β2m complex in these mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Finley and C. D. Davis, Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors 10, 15–24 (1999).

    PubMed  CAS  Google Scholar 

  2. A. C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biol. Trace Element Res. 55, 39–54 (1996).

    Article  CAS  Google Scholar 

  3. M. Diez-Ewald, L. R. Weintraub, and W. H. Crosby, Interrelationship of iron and manganese metabolism, Proc. Soc. Exp. Biol. Med. 129, 488–451 (1968).

    Google Scholar 

  4. J. W. Finley, Manganese absorption and retention by young women is dependent on serum ferritin concentration, Am. J. Clin. Nutr. 60, 949–955 (1998).

    Google Scholar 

  5. J. N. Feder, D. M. Penny, A. Irrinki, V. K. Lee, J. A. Lebron, N. Watson, et al., The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding, Proc. Natl. Acad. Sci. USA 95, 1472–1477 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. A. Waheed, S. Parkkila, J. Saarnio, R. E. Fleming, X. Y. Zhou, S. Tomatsu, et al., Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum, Proc. Natl. Acad. Sci. USA 96, 1579–1584 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. R. E. Fleming, M. C. Migas, X. Y. Zhou, R. S. Britton, E. M. Brunt, S. Tomatsu, et al., Duodenal expression of the iron transporter DMT1 is increased in a murine model of hereditary hemochromatosis, World Congress on Iron Metabolism, BioIron ’99, p. 11 (1999).

  8. M. Wareing, C. J. Ferguson, R. Green, D. Riccardi, and C. P. Smith, In vivo characterization of renal iron transport in the anaesthetized rat, J. Physiol. (Lond) 524(Pt. 2), 581–586 (2000).

    Article  CAS  Google Scholar 

  9. B. E. Rothenberg, and J. R. Voland, Beta-2-knockout mice develop parenchymal iron overload: a putative role for class I genes of the major histocompatibility complex in iron metabolism, Proc. Natl. Acad. Sci. USA 93, 1529–1534 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. M. Santos, M. W. Schilham, L. H. Rademakers, J. J. Marx, M. de Sousa, and H. Clevers, Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man, J. Exp. Med. 184, 1975–1985 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. NRC, Guide for the Care and Use of Laboratory Animals, Publication No. 85-23 (rev.), National Institute of Health, Bethesda, MD (1985).

    Google Scholar 

  12. P. G. Reeves, and B. L. O’Dell, Short-term zinc deficiency in the rat and self-selection of dietary protein level, J. Nutr. 111, 375–383 (1981).

    PubMed  CAS  Google Scholar 

  13. M. Kessler, O. Acuto, C. Storelli, H. Murer, M. Muller, and G. Semenza, A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes, Biochim. Biophys. Acta 506, 136–154 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  15. A. Dahlqvist, Assay of intestinal disaccharidases, Anal. Biochem. 227, 99–107 (1968).

    Article  Google Scholar 

  16. M. Stitt, Fumarase, in Methods of Enzymatic Analysis, H. Bergmeyer, ed., Verlag Chemie, Deerfield Beach, FL, pp. 359–362 (1984).

    Google Scholar 

  17. R. Gay, R. McComb, and G. Bowere, Optimum reaction conditions for human lactate dehydrogenase isoenzymes as they affect total lactate dehydrogenase activity, Clin. Chem. 14, 740–753 (1968).

    PubMed  CAS  Google Scholar 

  18. C. E. Thomas and D. J. Reed, Radical-induced inactivation of kidney Na, K-ATPase: sensitivity of membrane lipid peroxidation and the protective effect of vitamin E, Arch. Biochem. Biophys. 281, 96–105 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. I. Kaldor, Studies on intermediate iron metabolism. V. The measurement of nonhaemoglobin tissue iron, J. Exp. Biol. Med. Sci. 32, 795–800 (1954).

    CAS  Google Scholar 

  20. M. Santos, H. Clevers, M. de Sousa, and J. J. Marx, Adaptive response of iron absorption to anemia, increased erythropoiesis, iron deficiency, and iron loading in beta-2-microglobulin knockout mice, Blood. 91, 3059–3065 (1998).

    PubMed  CAS  Google Scholar 

  21. A. Pietrangelo and C. Camaschella, Molecular genetics and control of iron metabolism in hemochromatosis, Haematologica 83, 456–461 (1998).

    PubMed  CAS  Google Scholar 

  22. M. de Sousa, R. Reimao, R. Lacerda, P. Hugo, S. H. Kaufmann, and G. Porto, Iron overload in beta-2-microglobulin deficient mice, Immunol. Lett. 39, 105–111 (1994).

    Article  PubMed  Google Scholar 

  23. D. V. Vayenas, M. Repanti, A. Vassilopoulos, and D. A. Papanastasiou, Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain, Int. J. Clin. Lab. Res. 28, 183–186 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. R. McCance and E. Widdowson, Absorption and excretion of iron, Lancet 2, 680–684 (1937).

    Article  Google Scholar 

  25. A. B. Thomson, D. Olatunbosun, and L. S. Valverg, Interrelation of intestinal transport system for manganese and iron, J. Lab. Clin. Med. 78, 642–655 (1971).

    PubMed  CAS  Google Scholar 

  26. P. F. Hahn, W. F. Bale, J. F. Ross, W. M. Balfour, and G. H. Whipple, Radioactive iron absorption by gastro-intestinal tract: Influence of anaemia, anoxia and antecedent feeding distribution in growing dogs, J. Exp. Med. 78, 169–188 (1943).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

Rights and permissions

Reprints and permissions

About this article

Cite this article

(Fariba) Roughead, Z.K., Finley, J.W. Mucosal uptake and whole-body retention of dietary manganese are not altered in β2-microglobulin knockout mice. Biol Trace Elem Res 80, 231–244 (2001). https://doi.org/10.1385/BTER:80:3:231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:3:231

Index Entries

Navigation