Skip to main content
Log in

Host selenium status selectively influences susceptibility to experimental viral myocarditis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of the present work was to determine whether dietary selenium (Se) deficiency could influence the injurious effect of human viruses other than Coxsackie virus B3 (CVB3) on mouse heart. Weanling C3H/HeN mice were fed a Se-deficient or Se-adequate diet for 4 wk and then were inoculated intraperitoneally with one of the following viruses: Coxsackie virus B1 (CVB1), echovirus 9 (EV9), Coxsackie virus A9 (CVA9), or herpes simplex 1 (HSV1). Polio virus 1 (PV1) was employed as a negative control. Prior to inoculation, mean serum Se levels were 430 versus 61 ng/mL in adequate versus deficient mice, respectively. Ten days later, hearts were removed and processed by routine histological procedures. Cardiac lesions were scored according to the number and size of myocarditic foci. Significantly greater heart damage resulting from CVB1 and EV9 was observed in Se-deficient than in Se-adequate mice, and the Se status had no influence on CVA9-induced myocarditis. In contrast, heart damage caused by HSV1 was significantly milder in Se-deficient than in Se-adequate mice. Therefore, it may be concluded that the Se status of the murine host selectively influences the degree of viral-induced myocarditic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keshan Disease Research Group, Epidemiologic studies on the etiologic relationship of selenium and Keshan disease, Chin. Med. J. 92, 477–482 (1979).

    Google Scholar 

  2. O. A. Levander and M. A. Beck, Interacting nutritional and infectious etiologies of Keshan disease. Insights from coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E, Biol. Trace Element Res. 56, 5–21 (1997).

    CAS  Google Scholar 

  3. C. Su, Preliminary results of viral etiology of Keshan disease, Chin. Med. J. 59, 466–472 (1979).

    Google Scholar 

  4. J. Bai, S. Wu, K. Y. Ge, X. Deng, and C. Su, The combined effect of selenium deficiency and viral infection on the myocardium of mice, Acta Acad. Med. Sin. 2, 29–31 (1980).

    CAS  Google Scholar 

  5. M. A. Beck, P. C. Kolbeck, Q. Shi, L. H. Rohr, V. C. Morris, and O. A. Levander, Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice, J. Infect. Dis. 170, 351–357 (1994).

    PubMed  CAS  Google Scholar 

  6. M. A. Beck, P. C. Kolbeck, L. H. Rohr, Q. Shi, V. C. Morris, and O. A. Levander, Benign human enterovirus becomes virulent in selenium-deficient mice, J. Med. Virol. 43, 166–170 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. M. A. Beck, Q. Shi, V. C. Morris, and O. A. Levander, Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates, Nat. Med. 1, 433–436 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. O. A. Levander, Considerations on the assessment of selenium status, Fed. Proc. 44, 2579–2583 (1985).

    PubMed  CAS  Google Scholar 

  9. N. Iizuka, H. Yonekawa, and A. Nomoto, Nucleotide sequences important for translation initiation of enterovirus RNA, J. Virol. 65, 4867–4873 (1991).

    PubMed  CAS  Google Scholar 

  10. K. Y. Ge, J. Bai, X. J. Deng, S. Q. Wang, A. N. Xue, and C. Q. Su, The protective effect of selenium against viral myocarditis in mice, in Selenium in Biology and Medicine, part B, G. F. Combs, O. A. Levander, J. E. Spallholz, and J. E. Oldfield, eds., Van Nostrand/Reinhold, New York, pp. 761–768 (1987).

    Google Scholar 

  11. G. He, On the etiology of Keshan disease: two hypotheses, Chin. Med. J. 92, 416–422 (1979).

    Google Scholar 

  12. M. A. Beck, J. Handy, and O. A. Levander, The role of oxidative stress in viral infections, Ann. NY Acad. Sci. (in press).

  13. A. Nomoto, S, Koike, and J. Aoki, Tissue tropism and species specificity of poliovirus infection, Trends Microbiol. 2, 47–51 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. V. R. Racaniello and R. Ren, Transgenic mice and the pathogenesis of poliomyelitis, Arch. Virol. 9(Suppl.), 79–86 (1994).

    CAS  Google Scholar 

  15. W. Zhang, A. G. Cox, and E. W. Taylor, Hepatis C virus encodes a selenium-dependent glutathione peroxidase gene. Implications for oxidative stress as a risk factor in progression to hepatocellular carcinoma, Med. Klin. 94(Suppl. 3), 2–6 (1999).

    Article  Google Scholar 

  16. W. Zhang, C. S. Ramanathan, R. G. Nadimpalli, A. A. Bhat, A. G. Cox, and E. W. Taylor, Selenium-dependent glutathione peroxidase modules encoded by RNA viruses, Biol. Trace Element Res. 70, 97–116 (1999).

    CAS  Google Scholar 

  17. L. Zhao, A. G. Cox, J. A. Ruzicka, A. A. Bhat, W. Zhang, and E. W. Taylor. Molecular modeling and in vitro activity of an HIV-1-encoded glutathione peroxidase, Proc. Natl. Acad. Sci. USA 97, 6356–6361 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. J. L. Shister, T.G. Senkevich, M. J. Berry, and B. Moss, Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus, Science 279, 102–105 (1998).

    Article  Google Scholar 

  19. C. L. Afonso, E. R. Tulman, Z. Lu, L. Zsak, G. F. Kutish, and D. L. Rock, The genome of fowlpox virus, J. Virol. 74, 3815–3831 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. M. A. Beck, R. S. Esworthy, Y. S. Ho, and F. F. Chu, Glutathione peroxidase protects mice from viral-induced myocarditis, FASEB J. 12, 1143–1149 (1998).

    PubMed  CAS  Google Scholar 

  21. R. C. McKenzie, T. S. Rafferty, and G. J. Beckett, Selenium: an essential element for the immune function, Immunol. Today 19, 342–345 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. J. E. Spallholz, L. M. Boylan, and H. S. Larsen, Advances in understanding selenium’s role in the immune system, Ann. NY Acad. Sci. 587, 123–129 (1990).

    PubMed  CAS  Google Scholar 

  23. R. F. Burk and O. A. Levander, Selenium, in Modern Nutrition in Health and Disease, 9th ed., M. E. Shils, J. A. Olson, M. Shike, and A. C. Ross, eds., Williams & Wilkins, Baltimore, MD, pp. 265–276 (1999).

    Google Scholar 

  24. E. Domingo, RNA virus evolution, population dynamics, and nutritional status, Biol. Trace Element Res. 56, 23–30 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, R.M., Berría, M.I. & Levander, O.A. Host selenium status selectively influences susceptibility to experimental viral myocarditis. Biol Trace Elem Res 80, 23–31 (2001). https://doi.org/10.1385/BTER:80:1:23

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:80:1:23

Index Entries

Navigation