Skip to main content
Log in

Zinc uptake by human placental microvillous membrane vesicles

Effects of gestational age and maternal serum zinc levels

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc uptake by syncytiotrophoblast microvillous membrane vesicles (SMMV) from human placentas was characterized and the effects of maternal serum zinc levels at term and of gestational age on kinetic parameters were evaluated. Zinc uptake at pH 7.2 was rapid for the first 2 min, followed by a slower increase, approaching equilibrium after 30 min. Uptake was saturable at a zinc concentration of 30 µmol/L, higher than the upper range of the physiological serum zinc level. Kinetic analysis of uptake at 1 min in SMMV from term placenta showed similar Km values (mean: 6.9±0.6 µmol/L) for different levels of maternal serum zinc. However, Vmax was higher (p<0.05) in SMMV from mothers with serum zinc lower than 7.6 µmol/L compared to those with higher serum zinc levels (35.8±1.6 and 26.6±1.6 nmol 65Zn/mg protein/min, respectively). Km values were similar in term (>37 wk of gestation) and preterm (20–25 wk of gestation) placentas, whereas Vmax was higher (p<0.05) in the preterm (34.3±1.6 nmol Zn/mg protein/min) compared to term placentas from mothers with serum zinc levels above 7.6 µmol/L. These results suggest that whereas affinity for zinc was not altered with gestational age or maternal serum zinc levels, zinc-uptake capacity in human placenta is influenced both by gestational age and by low levels of maternal serum zinc in order to ensure an adequate maternal-fetal zinc transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Vargas Zapata, M. R. R. Melo, and C. M. Donangelo, Maternal, placental and cord zinc components in healthy women with different levels of serum zinc, Biol. Neonate 72, 84–93 (1997).

    PubMed  CAS  Google Scholar 

  2. A. W. Zimmerman, B. S. Dunham, D. J. Nochimson, B. M. Kaplan, J. M. Clive, and S. L. Kunkel, Zinc transport in pregnancy, Am. J. Obstet. Gynecol. 149, 523–529 (1984).

    PubMed  CAS  Google Scholar 

  3. K. R. Page, D. R. Abramovich, P. J. Aggett, A. Todd, and C. G. Dacke, The transfer of zinc across the term dually perfused human placental lobule, Quart. J. Exp. Physiol. 73, 585–593 (1988).

    CAS  Google Scholar 

  4. M. L. Kennedy and B. Lönnerdal, Zn, Fe and Mn uptake by microvillous membrane vesicles from human placenta, Fed. Proc. 46, 1015 (1987) (abstract).

    Google Scholar 

  5. G. Quinn and A. Flynn, Effect of physiological ligands on zinc uptake by syncytiotrophoblast microvillous plasma membrane vesicles from human placenta, Proc. Nutr. Soc. 48, 37A (1989).

    Google Scholar 

  6. N. Aslam and H. J. McArdle, Mechanism of zinc uptake by microvilli isolated from human term placenta, J. Cell. Physiol. 151, 533–538 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. K. R. Page, D. R. Abramovich, P. J. Agget, M. Bain, A. R. Chipperfield, H. Durdy, et al., Uptake of zinc by human placental microvillus border membrane and characterization of the effects of cadmium on this process, Placenta 13, 151–161 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. A. Flynn, C. Glazier, and B. Lönnerdal, Zinc uptake by syncytiotrophoblast microvillous plasma membrane vesicles from human placenta, Am. J. Clin. Nutr. 43, 675 (1986) (abstract).

    Google Scholar 

  9. Y. Lindsay and H. J. McArdle, Zinc uptake by human placental vesicles: evidence for a Zn/K counter transport process, Placenta 14, 43A (1993).

  10. P. Truman and H. C. Ford, The brush border of the human term placenta, Biochim. Biophys. Acta 779, 139–160 (1984).

    PubMed  CAS  Google Scholar 

  11. A. G. Booth, R. O. Olaniyan, and O. A. Vanderpuye, An improved method for the preparation of human placental syncytiotrophoblast microvilli, Placenta 1, 327–336 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. C. Henriques and N. M. F. Trugo, Partial characterization of folate uptake in microvillous membranes vesicles isolated from human placenta, Brazil. J. Med. Biol. Res. 29, 1583–1591 (1996).

    CAS  Google Scholar 

  13. K. Simmer, J. S. J. Dwight, I. M. H. Brown, R. P. H. Thompson, and M. Young, Placental handling of zinc in the guinea pig, Biol. Neonate 48, 114–121 (1985).

    PubMed  CAS  Google Scholar 

  14. P. Blakeborough and D. Salter, The intestinal transport of zinc studied using brush-border-membrane vesicles from the pigglet, Br. J. Nutr. 57, 45–55 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  16. M. P. Menard, P. Oestreicher, and R. J. Cousins, Zinc transport by isolated, vascularly perfused rat intestine and intestinal brush border vesicles, Am. Chem. Soc. 17, 233–246 (1983).

    Google Scholar 

  17. D. J. Bobilya, M. Briske-Anderson, and P. G. Reeves, Zinc transport into endothelial cells is a facilitated process, J. Cell. Physiol. 151, 1–7 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. R. D. Raffaniello, S. Y. Lee, S. Teichberg, and R. A. Wapnir, Distinct mechanisms of zinc uptake at the apical and basolateral membranes of Caco-2 cells, J. Cell. Physiol. 152, 356–361 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. C. M. R. Bax and D. L. Bloxam, Two major pathways of zinc(II) acquisition by human placental syncytiotrophoblast, J. Cell. Physiol. 164, 546–554 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. J. C. King, Assessment of zinc status, J. Nutr. 120, 1474–1479 (1990).

    PubMed  CAS  Google Scholar 

  21. C. A. Swanson and J. C. King, Reduced serum zinc concentration during pregnancy, Obstret. Gynecol. 62, 313–318 (1983).

    Article  CAS  Google Scholar 

  22. P. Menard and R. J. Cousins, Zinc transport by brush border membrane vesicles from rat intestine, J. Nutr. 113, 1434–1442. (1983).

    PubMed  CAS  Google Scholar 

  23. Y. Lindsay, L. M. Duthie, and H. J. Mcardle, Zinc levels in the rat fetal liver are not determined by transport across the placental microvillar membrane or the fetal liver plasma membrane, Biol. Reprod. 51, 358–365 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. S. Chaube, H. Nishimura, and Ch. A. Swinyard, Zinc and cadmium in normal human embryos and fetuses, Arch. Environ. Health. 26, 237–240 (1973).

    PubMed  CAS  Google Scholar 

  25. H. Nasrat, D. Bloxam, U. Nicolini, N. Williams, Y. Tannirandorn, P. Nicolaides, et al., Midpregnancy plasma zinc in normal and growth retarded fetuses—a preliminary study, Br. J. Obstet. Gynaecol. 99, 646–650 (1992).

    PubMed  CAS  Google Scholar 

  26. B. L. Vallee, The function of metallothionein, Neurochem. Int. 27, 23–33 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. R. A. Goyer, M. D. Haust, and M. G. Cherian, Cellular localization of metallothionein in human term placenta, Placenta 13, 349–355 (1992).

    PubMed  CAS  Google Scholar 

  28. C. L. Vargas Zapata, Homeostase e transferência materno-fetal de zinco na gestação humana, Ph.D. thesis, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapata, C.L.V., Trugo, N.M.F. & Donangelo, C.M. Zinc uptake by human placental microvillous membrane vesicles. Biol Trace Elem Res 73, 127–137 (2000). https://doi.org/10.1385/BTER:73:2:127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:73:2:127

Index Entries

Navigation