Skip to main content

Assessment of Placental Sodium-Independent Leucine Uptake and Transfer in Trophoblast Cells

  • Protocol
  • First Online:
Trophoblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2728))

  • 357 Accesses

Abstract

The placenta maintains the balance between nutrition and growth control of the fetus through selective and regulated supply of macronutrients such as carbohydrates, proteins, lipids, and critical micronutrients. Perturbations in the balanced supply of nutrients as found in gestational diseases and altered fetal development have been associated with changes in amino acid transport proteins, such as the System L amino acid heterodimeric exchangers LAT1/SLC7A5 and LAT2/SLC7A8. Syncytiotrophoblasts (STB) form the crucial cell layer at the placental barrier coordinating the transfer of essential amino acids such as leucine from the maternal to the fetal circulation. The System L-mediated leucine transport across the placental barrier is a Na+-independent process against a counter-directed gradient, maintained by a tightly regulated interplay between accumulative transporters, exchangers, and facilitators.

The two methods described here allow to standardize and characterize the uptake kinetics of leucine in conventionally cultured BeWo cells and the transfer of leucine across the placental cell barrier using a BeWo monolayer in the Transwell® system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roos S, Powell TL, Jansson T (2009) Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans 37:295–298. https://doi.org/10.1042/BST0370295

    Article  CAS  PubMed  Google Scholar 

  2. Burton GJ, Fowden AL, Thornburg KL (2016) Placental origins of chronic disease. Physiol Rev 96:1509–1565. https://doi.org/10.1152/physrev.00029.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faichney GJ, White GA (1987) Effects of maternal nutritional status on fetal and placental growth and on fetal urea synthesis in sheep. Aust J Biol Sci 40:365–377. https://doi.org/10.1071/BI9870365

    Article  CAS  PubMed  Google Scholar 

  4. Paolini CL, Marconi AM, Ronzoni S, Noio MDI, Fennessey P, Pardi G, Battaglia FC (2001) Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metabol 86:5427–5432. https://doi.org/10.1210/jcem.86.11.8036

    Article  CAS  Google Scholar 

  5. Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy 2012:179827. https://doi.org/10.1155/2012/179827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansson T, Ekstrand Y, Björn C, Wennergren M, Powell TL (2002) Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes 51:2214–2219. https://doi.org/10.2337/diabetes.51.7.2214

    Article  CAS  PubMed  Google Scholar 

  7. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A (2007) Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 165:849–857. https://doi.org/10.1093/aje/kwk071

    Article  PubMed  Google Scholar 

  8. Eriksson J, Forsen T, Osmond C, Barker D (2003) Obesity from cradle to grave. Int J Obes Relat Metab Disord 27:722–727. https://doi.org/10.1038/sj.ijo.0802278

    Article  CAS  PubMed  Google Scholar 

  9. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115:e290–e296. https://doi.org/10.1542/peds.2004-1808

    Article  PubMed  Google Scholar 

  10. Leon D a, Lithell HO, Vâgerö D, Koupilová I, Mohsen R, Berglund L, Lithell UB, PM MK (1998) Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ (Clinical Research ed) 317:241–245. https://doi.org/10.1136/bmj.317.7153.241

    Article  CAS  PubMed  Google Scholar 

  11. Sadovsky Y, Jansson T (2015) Placenta and placental transport function. In: Knobil and Neill’s physiology of reproduction: two-volume set 2, pp 1741–1782. https://doi.org/10.1016/B978-0-12-397175-3.00039-9

    Chapter  Google Scholar 

  12. Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Asp Med 34:139–158. https://doi.org/10.1016/j.mam.2012.10.007

    Article  CAS  Google Scholar 

  13. Bodoy S, Fotiadis D, Stoeger C, Kanai Y, Palacín M (2013) The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol Asp Med 34:638–645. https://doi.org/10.1016/j.mam.2012.12.006

    Article  CAS  Google Scholar 

  14. Cleal JK, Glazier JD, Ntani G, Crozier SR, Day PE, Harvey NC, Robinson SM, Cooper C, Godfrey KM, Hanson MA, Lewis RM (2011) Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast. J Physiol 589:987–997. https://doi.org/10.1113/jphysiol.2010.198549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaccioli F, Aye ILMH, Roos S, Lager S, Ramirez VI, Kanai Y, Powell TL, Jansson T (2015) Expression and functional characterisation of system L amino acid transporters in the human term placenta. Reprod Biol Endocrinol 13:57. https://doi.org/10.1186/s12958-015-0054-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kudo Y, Boyd CAR (2001) Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol 531:405–416. https://doi.org/10.1111/j.1469-7793.2001.0405i.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lewis RM, Glazier J, Greenwood SL, Bennett EJ, Godfrey KM, Jackson a. a., Sibley CP, Cameron IT, Hanson M a. (2007) L-serine uptake by human placental microvillous membrane vesicles. Placenta 28:445–452. https://doi.org/10.1016/j.placenta.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Cleal JK, Brownbill P, Godfrey KM, Jackson JM, Jackson AA, Sibley CP, Hanson MA, Lewis RM (2007) Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J Physiol 582:871–882. https://doi.org/10.1113/jphysiol.2007.130690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B (2010) The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reproduction 140:759–766. https://doi.org/10.1530/REP-10-0221

    Article  CAS  PubMed  Google Scholar 

  20. Zaugg J, Ziegler F, Nuoffer J-M, Moser-Hässig R, Albrecht C (2021) Counter-directed leucine gradient promotes amino acid transfer across the human placenta. J Nutr Biochem 96:108760. https://doi.org/10.1016/j.jnutbio.2021.108760

    Article  CAS  PubMed  Google Scholar 

  21. Zaugg J, Huang X, Ziegler F, Rubin M, Graff J, Müller J, Moser-Hässig R, Powell T, Gertsch J, Altmann KH, Albrecht C (2020) Small molecule inhibitors provide insights into the relevance of LAT1 and LAT2 in materno-foetal amino acid transport. J Cell Mol Med 24:12681–12693. https://doi.org/10.1111/jcmm.15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Häfliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, Gertsch J, Charles RP (2018) The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Canc Res 37. https://doi.org/10.1186/s13046-018-0907-z

  23. Huang X, Lüthi M, Ontsouka EC, Kallol S, Baumann MU, Surbek D, Albrecht C (2016) Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol Hum Reprod 0:gaw018. https://doi.org/10.1093/molehr/gaw018

    Article  CAS  Google Scholar 

  24. Johnson LW, Smith CH (1988) Neutral amino acid transport systems of microvillous membrane of human placenta. Am J Physiol Cell Physiol 254. https://doi.org/10.1152/ajpcell.1988.254.6.c773

  25. Desforges M, Mynett KJ, Jones RL, Greenwood SL, Westwood M, Sibley CP, Glazier JD (2009) The SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane. J Physiol 587:61–72. https://doi.org/10.1113/jphysiol.2008.161331

    Article  CAS  PubMed  Google Scholar 

  26. Hoeltzli SD, Smith CH (1989) Alanine transport systems in isolated basal plasma membrane of human placenta Am J Physiol Cell Physiol 256 https://doi.org/10.1152/ajpcell.1989.256.3.c630

  27. Schiöth HB, Roshanbin S, Hägglund MGA, Fredriksson R (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Asp Med 34:571–585. https://doi.org/10.1016/j.mam.2012.07.012

    Article  CAS  Google Scholar 

  28. Pramod AB, Foster J, Carvelli L, Henry LK (2013) SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Asp Med 34:197–219. https://doi.org/10.1016/j.mam.2012.07.002

    Article  CAS  Google Scholar 

  29. Lassance L, Haghiac M, Leahy P, Basu S, Minium J, Zhou J, Reider M, Catalano PM, Hauguel-De Mouzon S (2015) Identification of early transcriptome signatures in placenta exposed to insulin and obesity. Am J Obstet Gynecol 212:647.e1–647.e11. https://doi.org/10.1016/j.ajog.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  30. Karl PI, Tkaczevski H, Fisher SE (1989) Characteristics of histidine uptake by human placental microvillous membrane vesicles. Pediatr Res 25:19–26. https://doi.org/10.1203/00006450-198901000-00005

    Article  CAS  PubMed  Google Scholar 

  31. Novak DA, Beveridge MJ (1997) Glutamine transport in human and rat placenta. Placenta 18:379–386. https://doi.org/10.1016/S0143-4004(97)80037-9

    Article  CAS  PubMed  Google Scholar 

  32. Dicke JM, Verges D, Kelley LK, Smith CH (1993) Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae. Placenta 14:85–92. https://doi.org/10.1016/S0143-4004(05)80251-6

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto Y, Balkovetz DF, Leibach FH, Mahesh VB, Ganapathy V (1988) Na+ + Cl--gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles. FEBS Lett 231:263–267. https://doi.org/10.1016/0014-5793(88)80744-0

    Article  CAS  PubMed  Google Scholar 

  34. Norberg S, Powell TL, Jansson T (1998) Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res 44:233–238. https://doi.org/10.1203/00006450-199808000-00016

    Article  CAS  PubMed  Google Scholar 

  35. Furesz TC, Moe AJ, Smith CH (1995) Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. Am J Phys 268:C755–C761

    Article  CAS  Google Scholar 

  36. Ayuk PT, Sibley CP, Donnai P, D’Souza S, Glazier JD (2000) Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol 278:C1162–C1171

    Article  CAS  PubMed  Google Scholar 

  37. Hoeltzli SD, Kelley LK, Moe AJ, Smith CH (1990) Anionic amino acid transport systems in isolated basal plasma membrane of human placenta Am J Physiol Cell Physiol 259 https://doi.org/10.1152/ajpcell.1990.259.1.c47

  38. Moe AJ, Smith CH (1989) Anionic amino acid uptake by microvillous membrane vesicles from human placenta. Am J Phys 257. https://doi.org/10.1152/ajpcell.1989.257.5.c1005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zaugg, J., Albrecht, C. (2024). Assessment of Placental Sodium-Independent Leucine Uptake and Transfer in Trophoblast Cells. In: Raha, S. (eds) Trophoblasts. Methods in Molecular Biology, vol 2728. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3495-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3495-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3494-3

  • Online ISBN: 978-1-0716-3495-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics