Skip to main content
Log in

Acorus calamus extracts and nickel chloride

Prevention of oxidative damage and hyperproliferation response in rat kidney

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nickel, a major environmental pollutant, is known for its clastogenic, toxic, and carcinogenic potential. In this article, we report the effect of Acorus calamus on nickel chloride (NiCl2)-induced renal oxidative stress, toxicity, and cell proliferation response in male Wistar rats. NiCl2 (250 μmol/kg body weight/mL) enhanced reduced renal glutathione content (GSH) glutathione-S-transferase (GST), glutathione reductase (GR), lipid peroxidation (LPO), H2O2 generation, blood urea nitrogen (BUN), and serum creatinine with a concomitant decrease in the activity of glutathione peroxidase (GPx) (p<0.001). NiCl2 administration also dose-dependently induced the renal ornithine decarboxylase (ODC) activity several-fold as compared to salinetreated control rats. Similarly, renal DNA synthesis, which is measured in terms of [3H] thymidine incorporation in DNA, was elevated following NiCl2 treatment. Prophylactic treatment of rats with A. calamus (100 and 200 mg/kg body weight po) daily for 1 wk resulted in the diminution of NiCl2-mediated damage, as evident from the downregulation of glutathione content, GST, GR, LPO, H2O2 generation, BUN, serum creatinine, DNA synthesis (p<0.001), and ODC activity (p<0.01) with concomitant restoration of GPx activity. These results clearly demonstrate the role of oxidative stress and its relation to renal disfunctioning and suggest a protective effect of A. calamus on NiCl2-induced nephrotoxicity in a rat experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Duthie, A. Ma, M.A. Rose, and A.R. Collins, Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes, Cancer Res. 56, 1291–1295 (1996).

    PubMed  CAS  Google Scholar 

  2. J. A. Larrauri, C. Sanchez-Moreno, P. Ruperez, and F. Saura-Calixto, Free radical scavenging capacity in the aging of selected red Spanish wines, J. Agric. Food Chem. 47, 1603–1606 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. D. Stajner, N. Milic, B. Lazic, and N. Mimica-Dukic, Study on antioxidant enzymes in Allium cepa L. and Allium fist ulosum L, Phytother. Res. 12, S15-S17 (1998).

    Article  CAS  Google Scholar 

  4. D. Malencic, O. Gasic, M. Popovic, and P. Boza, Screening for antioxidant properties of Salvia reflexa Hornem, Phytother. Res. 14, 546–548 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. P. Grandjean, Human exposure to nickel, IARC Sci. Publ. 53, 469–485 (1984).

    PubMed  CAS  Google Scholar 

  6. M. Knopfel, G. Schulthess, F. Funk, and H. Hauser, Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions, Biophys. J. 79, 874–884 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. M. Costa, J. Simmons-Hansen, C. W. M. Bedrossian, J. Bonura, and R. M. Caprioli, Phagocytosis, cellular distribution, and carcinogenic activity of particulate nickel compounds in tissue culture, Cancer Res. 41, 2868–2876 (1981).

    PubMed  CAS  Google Scholar 

  8. H. Cangul, L. Broday, K. Salnikow, et al., Molecular mechanisms of nickel carcinogenesis, Toxicol. Lett. 127, 69–75 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. K. S. Kasprzak, F. W. Sunderman, and K. Salnikow, Nickel carcinogenesis, Mutat. Res. 533, 67–97 (2003).

    PubMed  CAS  Google Scholar 

  10. C. Wataha, P. E. Lockwood, A. Schedle, M. Noda, and S. Bouillaguet, Ag, Cu, Hg and Ni ions alter the metabolism of human monocytes during extended low-dose exposures, J. Oral Rehabil. 29, 133–139 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. R. L. Messer and L. C. Lucas, Evaluations of metabolic activities as biocompatibility tools: a study of individual ions effects of fibroblasts, Dent. Mater. 15, 1–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. R. L. Messer, S. Bishop, and L. C. Lucas, Effects of metallic ion toxicity on human gingival fibroblasts morphology, Biomaterials 20, 1647–1657 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. M. Misra, R. E. Rodriguez, and K. S. Kasprzak, Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems, Toxicology 64, 1–17 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. Costa and C. B. Klein, Nickel carcinogenesis, mutation, epigenetics, or selection, Environ. Health Perspect. 107, A438-A439 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. L. A. Garner, Contact dermatitis to metals, Dermatol. Ther. 17, 321–327 (2004).

    Article  PubMed  Google Scholar 

  16. B. N. Ames, M. C. Hollstein, and R. Cathcart, in Lipid Peroxides in Biology and Medicine K. Yagi, ed., Academic, New York, pp. 339–351 (1982).

    Google Scholar 

  17. M. Athar, S. K. Hasan, and R. C. Srivastava, Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: implications for nickel carcinogenesis, Biochem. Biophys. Res. Commun. 147, 1276–1281 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. N. Nishiyama, Y. Zhou, and H. Saito, Beneficial effects of DX-9386, a traditional Chinese prescription, on memory disorder produced by lesioning the amygdale in mice, Biol. Pharm. Bull. 17, 1679–1681 (1994).

    PubMed  CAS  Google Scholar 

  19. Y. Zhang, K. Takashina, H. Saito, and N. Nishiyama, Anti-aging effects of DX-9386 in senescence-accelerated mouse, Biol. Pharm. Bull. 17, 866–868 (1994).

    PubMed  CAS  Google Scholar 

  20. L. V. Asolkar, K. K. Kakkar, and O. J. Chakra, in 2nd Supplement to Glossary of Indian Medicinal Plants with Active Principles, CSIR (1992).

  21. P. S. Vaidyaratnam, in Varier's Indian Medicinal Plants Oriental Longman Ltd, Arya Vaidya Sala, Kottakal, p. 51 (1994).

    Google Scholar 

  22. P. K. Shukla, V. K. Khanna, M. M. Ali, R. R. Maurya, S. S. Handa, and R. C. Srimal, Neuroprotective effect of Acorus calamus against acrylamide induced neurotoxicity, Phytother. Res. 15, 1–5 (2001).

    Article  Google Scholar 

  23. P. C. Dandiya and H. Cullumbine, Studies on Acorus calamus (III): some pharmacological action of the volatile oil, J. Pharm. Exp. Ther. 125, 353–359 (1959).

    CAS  Google Scholar 

  24. G. V. Satyavati, M. K. Raina, and M. Sharma, in Medicinal Plants of India Indian Council of Medical Research, New Delhi, Vol. 1, pp. 6–7 (1976).

    Google Scholar 

  25. J. S. Cho, Y. H. Kim, J. Y. Kong, C. H. Yang, and C. G. Park, Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus, Life Sci. 71, 591–599 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. B. Y. Hu and Y. Y. Ji, Research on the anticarcinogenic activation of Acorus calamus. Anticarcinogenic activation of α-asarone on human carcinoma cells, Zhong Xi Yi Jie He Za Zhi 6, 480–483 (1986).

    PubMed  CAS  Google Scholar 

  27. G. A. Burdock. Fenaroli's Handbook of Flavour Ingredient, CRC, Boca Raton, FL, Vol. 1 (1970).

    Google Scholar 

  28. V. K. Raina, S. K. Srivastava, and K. V. Syamasunder, Essential oil composition of A. calamus L. from the lower region of the Himalayas, Flavour Fragr J. 18, 18–20 (2003).

    Article  CAS  Google Scholar 

  29. D. J. Jollow, J. R. Mitchell, N. Zampaglione, and J. R. Gillete, Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4, bromobenzene oxide as the hepatotoxic intermediate, Pharmacology 11, 151–169 (1974).

    Article  PubMed  CAS  Google Scholar 

  30. W. H. Habig, M. J. Pabs, and W. B. Jokoby, GST: the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  31. I. Carlberg and B. Mannervick, Glutathione reductase level in rat brain, J. Biol. Chem. 250, 5575–5580 (1975).

    Google Scholar 

  32. J. R. Wright, H. D. Colby, and P. R. Miles, Cytosolic factors that affect microsomal lipid peroxidation in lung and liver, Arch. Biochem. Biophys. 206, 296–304 (1981).

    Article  PubMed  CAS  Google Scholar 

  33. M. W. Kanter, Clinical Chemistry, Bobbs Merill Co. (1975).

  34. R. S. Hare, Endogenous creatinine in serum and urine, Proc. Soc. Exp. Biol. Med. 74, 148 (1950).

    PubMed  CAS  Google Scholar 

  35. E. Pick and Y. Keisari, A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture, J. Immunol. Methods, 38, 161–170 (1980).

    Article  PubMed  CAS  Google Scholar 

  36. J. Mohandas, J. J. Marshall, G. G. Duggin, J. S. Horvath, and D. Tiller, Differential distribution of glutathione and glutathione related enzymes in rabbit kidney, Cancer Res. 44, 5086–5091 (1984).

    PubMed  CAS  Google Scholar 

  37. T. G. O'Brian, R. C. Simsiman, and R. K. Boutwell, Induction of the polyamine biosynthesis enzymes in mouse epidermis by tumor promoting agents, Cancer Res. 35, 1662–1670 (1975).

    Google Scholar 

  38. R. C. Smart, M. T. Huang, and A. H. Conney, Sn 1,2-diacylglycerols mimic the effects of TPA in vivo by inducing biochemical changes associated with tumor promotion in mouse epidermis, Carcinogenesis 7, 1865–1870 (1986).

    Article  PubMed  CAS  Google Scholar 

  39. K. W. Giles and A. Myers, An improved diphenyl method for the estimation of deoxyribonucleic acid, Nature 206, 93–98 (1965).

    Article  CAS  Google Scholar 

  40. O. M. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, Protein measurement with folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  41. S. Karkabounas, D. Assimakopoulos, M. Malamas, A. L. Skaltsounis, and S. Leonce, Antiproliferative and anticarcinogenic effects of a aqueous preparation of Abies alba and Viscum album se abies, on a L-1210 malignant cell line and tumor bearing Wistar rats, Anticancer Res. 20, 4391–4395 (2000).

    PubMed  CAS  Google Scholar 

  42. A. R. Opoku, M. Geheeb-Keller, J. Lin, S. E. Terblanche, and A. Hutchings, Preliminary screening of some traditional Zulu medicinal plants for antineoplastic activities versus the Hep G2 cell line, Phytother. Res. 14, 534–537 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. N. Khan and S. Sultana, Chemomodulatory effect of Ficus racemosa extract against chemically induced renal carcinogenesis and oxidative damage response in Wistar rats, Life Sci. 77, 1194–1210 (2004).

    Article  CAS  Google Scholar 

  44. R. A. Floyd, M. S. West, K. L. Eneff, W. E. Hogsett, and D. T. Tingey, Hydroxyl free radical medicated formation of 8-hydroxyguanine in isolated DNA, Arch. Biochem. Biophys. 262, 266–272 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. W. E. Fahl, N. D. Lalwani, T. Watanabe, S. K. Goel, and J. K. Reddy, DNA damage related to increased hydrogen peroxide generation by hypolipidemic drug induced liver peroxisomes, Proc. Natl. Acad. Sci. (USA) 81, 7827–7830 (1984).

    Article  CAS  Google Scholar 

  46. K. M. Prise, S. Davis, and B. D. Michael, Cell killing and DNA damage in Chinese hamster V79 cells treated with hydrogen peroxide, Int. J. Radiat. Biol. 55, 583 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, L., Khan, T.H., Jahangir, T. et al. Acorus calamus extracts and nickel chloride. Biol Trace Elem Res 113, 77–91 (2006). https://doi.org/10.1385/BTER:113:1:77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:1:77

Index Entries

Navigation