Skip to main content
Log in

High-dose chromium(III) supplementation has no effects on body mass and composition while altering plasma hormone and triglycerides concentrations

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium is generally believed to be an essential element and is often claimed to have value as a weight loss or muscle building agent. Recent studies in humans and rats have failed to demonstrate effects on body composition, although recent studies with pharmacological doses of the cation [Cr(III)3O(O2CCH2CH3)6(H2O)3]+ (or Cr3) (≤1 mg Cr/kg body mass) in rats have noted a trend toward body mass loss and fat mass loss. Thus, the effects of large gavage doses of Cr3 (1–10 mg Cr/kg) on body mass, organ mass, food intake, and blood plasma variables (insulin, glucose, leptin, cholesterol, and triglycerides) were examined over a 10-wk period using male Sprague-Dawley rats. No effects on body composition were noted, although Cr3 administration lowered (p<0.05) plasma insulin, leptin, and triglycerides concentrations. As Cr3 is absorbed greater than 10-fold better than commercially available nutritional supplements, the lack of an effect of the Cr(III) compound at these levels of administration clearly indicates that Cr(III) supplements do not have an effect on body composition at any reasonable dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Flegal, M. D. Carrol, C. L. Ogden, and C. L. Johnson, Prevalence and trends in obesity among US adults 1999–2000, JAMA 288, 1723–1727 (2002).

    Article  PubMed  Google Scholar 

  2. J. B. Vincent, The bioinorganic chemistry of chromium(III), Polyhedron 20, 1–26 (2001).

    Article  CAS  Google Scholar 

  3. J. B. Vincent, Elucidating a biological role for chromium at a molecular level, Acc. Chem. Res. 33, 503–510 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. H. C. Lukaski, Chromium as a supplement, Annu. Rev. Nutr. 19, 279–301 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. G. W. Evans, The effect of chromium picolinate on insulin controlled parameters in humans, Int. J. Biosoc. Med. Res. 11, 163–180 (1989).

    Google Scholar 

  6. G. R. Kaats, J. A. Wise, K. Blum, et al., The short-term therapeutic efficacy of treating obesity with a plant of improved nutrition and moderate calorie restriction, Curr. Ther. Res. 51, 261–274 (1992).

    Google Scholar 

  7. G. R. Kaats, K. Blum, J. A. Fisher, and J. A. Adelman, Effects of chromium picolinate supplementation on body composition: a randomized double-masked placebo-controlled study, Curr. Ther. Res. 57, 747–756 (1996).

    Article  CAS  Google Scholar 

  8. R. Bulbulian, D. D. Pringle, and M. S. Liddy, Chromium picolinate supplementation in male and female swimmers, Med. Sci. Sport. Exerc. 28(5 Suppl.), S111 (1996).

    Google Scholar 

  9. B. Bahadori, S. Wallner, H. Schneider, T. C. Wascher, and H. Topak, Effects of chromium yeast and chromium picolinate on body composition in obese non-diabetic patients during and after a very low-calorie diet, Acta Med. Austr. 24, 185–187 (1997) (in German).

    CAS  Google Scholar 

  10. S. P. Clancy, P. M. Clarkson, M. E. DeCheke, et al., Effects of chromium picolinate supplementation on body composition, strength and urinary chromium loss in football players, Int. J. Sport Nutr. 4, 142–153 (1994).

    PubMed  CAS  Google Scholar 

  11. L. K. Trent and D. Thielding-Canel, Effects of chromium picolinate on body composition, J. Sports Med. Phys. Fitness 35, 273–280 (1995).

    PubMed  CAS  Google Scholar 

  12. H. C. Lukaski, W. Bolonchuk, W. A. Siders, and D. B. Milne, Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men, Am. J. Clin. Nutr. 63, 954–965 (1996).

    PubMed  CAS  Google Scholar 

  13. M. A. Hallmark, T. H. Reynolds, C. A. DeSouza, C. G. Dotson, R. A. Anderson, and M. A. Rogers, Effects of chromium on resistance training on muscle strength and body composition, Med. Sci. Sports Exerc. 28, 139–144 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. W. J. Pasman, M. S. Westerperp-Plantenga, and W. H. M. Saris, The effectiveness of long-term supplementation of carbohydrate, chromium, fibre, and caffeine on weight maintenance, Int. J. Obes. Related Metab. Disord. 21, 1143–1151 (1997).

    Article  CAS  Google Scholar 

  15. W. W. Campbell, L. J. Joseph, S. L. Davey, D. Cyr-Campbell, R. A. Anderson, and W. J. Evans, Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men, J. Appl. Physiol. 86, 29–39 (1999).

    PubMed  CAS  Google Scholar 

  16. R. I. Press, J. Geller, and G. W. Evans, The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects, West. J. Med. 152, 41–45 (1990).

    PubMed  CAS  Google Scholar 

  17. R. B. Krieder, R. Klesges, K. Harmon, et al., Effects of ingesting supplements designed to promote lean muscle tissue accretion on body composition during resistance training, Int. J. Sports Nutr., 6, 234–246 (1996).

    Google Scholar 

  18. J. B. Vincent, The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent, Sports Med. 33, 213–230 (2003).

    Article  PubMed  Google Scholar 

  19. M. H. Pittler, C. Stevinson, and E. Ernst, Chromium picolinate for reducing body weight: meta-analysis of randomized trials, Int. J. Obes. 27, 522–529 (2003).

    Article  CAS  Google Scholar 

  20. S. L. Nissen, and R. L. Sharp, Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis, J. Appl. Physiol. 94, 651–659 (2003).

    PubMed  CAS  Google Scholar 

  21. B. J. Clodfelder, B. M. Gullick, H. C. Lukaski, Y. Neggers, and J. B. Vincent, Oral administration of the biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats, J. Biol. Inorg. Chem. 10, 119–130 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. B. J. Clodfelder, C. Chang, and J. B. Vincent, Absorption of the biomimetic chromium cation triaqua-µ3-oxo-triaqua-µ-hexapropionatotrichromium(III) in rats, Biol. Trace Element Res. 98, 159–169 (2004).

    Article  CAS  Google Scholar 

  23. K. L. Olin, D. M. Stearns, W. H. Armstrong, and C. L. Keen, Comparative retention/absorption of 51chromium (51Cr) from 51Cr chloride, 51Cr nicotinate and 51Cr picolinate in a rat model, Trace Elements Electrolytes 11, 182–186 (1994).

    CAS  Google Scholar 

  24. R. A. Anderson, N. A. Bryden, M. M. Polansky, and K. Gauteschi, Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats, J. Trace Elements Exp. Med. 9, 11–25 (1996).

    Article  CAS  Google Scholar 

  25. C. Sun, W. Zhang, S. Wang, and Y. Zhang, Effect of chromium gluconate on body weight, serum leptin and insulin in rats, Wei Sheng Yan Jiu 29, 370–371 (2000) (in Chinese).

    PubMed  CAS  Google Scholar 

  26. S. Wang, C. Sun, Q. Kao, and C. Yu, Effects of chromium and fish oil on insulin resistance and leptin resistance in obese developing rats, Wei Sheng Yan Jiu 30, 284–286 (2001) (in Chinese).

    PubMed  CAS  Google Scholar 

  27. B. M. Gullick, Ph.D. dissertation, The University of Alabama, Tuscaloosa (2005).

  28. A. Earnshaw, B. N. Figgis, and J. Lewis, Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimer chromium and iron carboxylates, J. Chem. Soc. 1656–1663 (1966).

  29. J. S. Striffler, J. S. Law, M. M. Polansky, S. J. Bhathena, and R. A. Anderson, Chromium improves insulin response to glucose in rats, Metabolism 44, 1314–1320 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats, J. Am. Coll. Nutr. 16, 273–279 (1997).

    PubMed  CAS  Google Scholar 

  31. D. L. Hasten, M. Hegsted, M. J. Keenan, and G. S. Morris, Effects of various forms of dietary chromium on growth and body composition in the rat, Nutr. Res. 17, 283–294 (1997).

    Article  CAS  Google Scholar 

  32. D. L. Hasten, M. Hegsted, M. J. Keenan, and G. S. Morris, Dosage effects of chromium picolinate on growth and body composition in the rat, Nutr. Res. 17, 1175–1186 (1997).

    Article  CAS  Google Scholar 

  33. G. S. Morris, K. A. Guidry, M. Hegsted, and D. L. Hasten, Effects of dietary chromium supplementation on cardiac mass, metabolic enzymes, and contractile proteins, Nutr. Res. 15, 1045–1052 (1995).

    Article  CAS  Google Scholar 

  34. A. Sclafani, and M. Abrams, Rats show only a weak preference for the artificial sweetener aspartame, Physiol. Behav. 37, 253–256 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. J. C. Smith, T. W. Castonguay, D. F. Foster, and L. M. Bloom, A detailed analysis of glucose and saccharin drinking in the rat, Physiol. Behav. 24, 173–176 (1980).

    Article  PubMed  CAS  Google Scholar 

  36. B. Beck, A. Burlet, J.-P. Max, and A. Stricker-Krongrad, Effects of long-term ingestion of aspartame on hypothalamic neuropeptide Y, plasma leptin and body weight gain and composition, Physiol. Behav. 75, 41–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. K. P. Porikas, and H. S. Koopmans, The effect of non-nutritive sweeteners on body weight in rats, Appetite 11(Suppl. 1) 12–15 (1998).

    Google Scholar 

  38. B. J. Rolls, Effects of intense sweeteners on hunger, food intake, and body weight: a review, Am. J. Clin. Nutr. 53, 872–878 (1991).

    PubMed  CAS  Google Scholar 

  39. Y. Sun, K. Mallya, J. Ramirez, and J. B. Vincent, The biomimetic [Cr3O(O2CCH2CH3)6 (H2O)3]+ decreases plasma cholesterol and triglycerides in rats: towards chromium-containing therapeutics, J. Biol. Inorg. Chem. 4, 838–845 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Sun, B. J. Clodfelder, A. A. Shute, T. Irvin, and J. B. Vincent, The biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats, J. Biol. Inorg. Chem. 7, 852–862 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. J. K. Speetjens, A. Parand, M. W. Crowder, and J. B. Vincent, Low-molecular-weight chromium-binding substance and biomimetic [Cr3O(O2CCH2CH3)6(H2O)3]+ do not cleave DNA under physiologically relevant conditions, Polyhedron 18, 2617–2624 (1999).

    Article  CAS  Google Scholar 

  42. J. K. Speetjens, R. A. Collins, J. B. Vincent, and S. A. Woksi, The nutritional supplement chromium(III) tris(picolinate) cleaves DNA, Chem. Res. Toxicol. 12, 483–487 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. B. Debski, Z. Krejpcio, T. Kuryl, R. Wokciak, and M. Lipko, Biomimetic chromium(III) complex and frutan supplementation affect insulin and membrane glucose transport in rats, J. Trace Elements Exp. Med. 17, 206–207 (2004).

    Google Scholar 

  44. Z. Krejpcio, B. Debski, R. Wojciak, T. Kuryl, and M. Tubacka, Biomimetic chromium(III) complex and fructan supplementation improve blood variables in STZ-induced diabetic rats, J. Trace Elem. Exp. Med. 17, 207–208 (2004).

    Google Scholar 

  45. C. M. Davis, A. C. Royer, and J. B. Vincent, Synthetic multinuclear chromium assembly activates insulin receptor tyrosine kinase activity: functional model for low-molecular-weight chromium-binding substance, Inorg. Chem. 36, 5316–5320 (1997).

    Article  CAS  Google Scholar 

  46. A. A. Shute, and J. B. Vincent, The stability of the biomimetic cation triaqua-μ-oxohexa-propionatotrichromium(III) in vivo in rats, Polyhedron 20, 2241–2252 (2001).

    Article  CAS  Google Scholar 

  47. A. A. Shute, and J. B. Vincent, The fate of the biomimetic cation triaqua-μ-oxohexapro-pionatotrichromium(III) in rats, J. Inorg. Biochem. 89, 272–282 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, R., Adams, B., French, A. et al. High-dose chromium(III) supplementation has no effects on body mass and composition while altering plasma hormone and triglycerides concentrations. Biol Trace Elem Res 113, 53–66 (2006). https://doi.org/10.1385/BTER:113:1:53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:1:53

Index Entries

Navigation