Skip to main content

Importance of Chromium in the Diet

  • Reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Chromium is a micronutrient found in several oxidation states, being trivalent chromium and hexavalent chromium the most prevalent. Although it is present in several foods in small quantities, there is still no recommended average requirement. Studies show that during the various life stages, there are different needs of ingestion of this mineral. Despite the low molecular weight, there is a small absorption capacity of chromium and its absorption occurs in the intestine by passive transport. Along with other metallic ions, its transport is related to the performance of transferrin, and there may be competition for sites that bind to iron and other minerals. Chromium is related to changes that encompass carbohydrate and lipid metabolism. Therefore, some studies indicate that chromium-deficient diets may favor insulin resistance, with consequent development of type 2 diabetes. This mineral is also present in nutritional supplements featuring various structures such as chromium picolinate, chromium histidinate, chromium chloride, and chromium nicotinate. Trivalent chromium demonstrated an important role in gene expression, mainly in hepatocytes, insulin activity, and adiposity. Studies have investigated the effects of chromium supplementation on diabetes, obesity, and dyslipidemia, but the results are still incipient for the development of guidelines recommending supplementation in risk groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

Adequate intake

CASQ 1:

Calsequestin 1

CIDEA:

Cell-death-induced DNA fragmentation factor

Cr3+:

Trivalent chromium

Cr6+:

Hexavalent chromium

CrCl3:

Chromium chloride

CrPic:

Chromium picolinate

CrSP:

Complex of chelated chromium with small peptides

DGAT 2:

Decylglycol transferase

EAR:

Estimated average requirement

ENO 3:

Enolase 3

Glut 4:

Glucose transporter in muscle and adipose tissue dependent on insulin

GPI 1:

Glucose phosphate isomerase1

IGF-1:

Insulin-like growth factor 1

IRS-1:

Insulin receptor substrate 1

IRS-2:

Insulin receptor substrate 2

Kg:

Kilograms

LDL-c:

Low-density cholesterol

mRNA:

Messenger ribonucleic acid

NBC:

Chromium nicotinate

Ph:

Hydrogenation potential

PI3k:

Phosphatidylinositol-3-kinase

RDA:

Recommended dietary allowance

TPM 1:

Tropomyosin-1

TTP:

Tocopherol transfer protein

UCP 1:

Uncoupled protein 1

UL:

Tolerable upper intake levels

VLDL:

Very low-density lipoproteins

WHO:

World Health Organization

μg:

micrograms

References

  • Abdollahi M, Farshchi A, Nikfar S et al (2013) Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. J Pharm Pharm Sci 16(1):99–114

    PubMed  Google Scholar 

  • Abraham AS, Sonnenblick M, Eini M, Shemesh O, Batt AP (1980) The effect of chromium on established atherosclerotic plaques in rabbits. Am J Clin Nutr 33(11):2294–2298

    CAS  PubMed  Google Scholar 

  • Afridi HI, Kazi TG, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Khan S, Kolachi NF, Shah F, Jamali MK, Arain MB (2011) Chromium and manganese levels in biological samples of normal and night blindness children of age groups (3–7) and (8–12) years. Biol Trace Elem Res 143(1):103–115. https://doi.org/10.1007/s12011-010-8851-6

    CAS  PubMed  Google Scholar 

  • Ainscough EW, Brodie AM, Plowman JE, Bloor SJ, Loehr JS, Loeh M (1980) Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy. Biochemistry 19(17):4072–4079

    CAS  PubMed  Google Scholar 

  • Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244(17):4628–4633

    CAS  PubMed  Google Scholar 

  • Amato P, Morales AJ, Yen SS (2000) Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body composition in healthy, nonobese, older men and women. J Gerontol A Biol Sci Med Sci 55(5):M260–M263

    CAS  PubMed  Google Scholar 

  • Angelova MA, Petkova-Marinova TV, Pogorielov MV, Loboda AN, Nedkova-Kolarova VN, Bozhinova AN (2014) Trace element status (iron, zinc, copper, chromium, cobalt, and nickel) in iron-deficiency Anaemia of children under 3 years. Anemia 2014:1–8. https://doi.org/10.1155/2014/718089

    Google Scholar 

  • Azab SFA, Saleh SH, Elsaeed WF, Elshafie MA, Sherief LM, Esh AMH (2014) Serum trace elements in obese Egyptian children: a case–control study. Ital J Pediatr 40:20. https://doi.org/10.1186/1824-7288-40-20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180(1):5–22. https://doi.org/10.1016/S0300-483X(02)00378-5

    CAS  PubMed  Google Scholar 

  • Bai J, Xun P, Morris S, Jacobs DR, Liu K, He K (2015) Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA trace element study. Sci Rep 5:15606. https://doi.org/10.1038/srep15606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85(1):33–69

    CAS  PubMed  Google Scholar 

  • Brock JH (1985) Transferrins. In: Harrison PM (ed) Metalloproteins: part 2: metal proteins with non-redox roles. Palgrave Macmillan, London, pp 183–262. ISBN 978-1-349-06375-8

    Google Scholar 

  • Capone K, Sudhir S, Patton T, Weinstein D, Newton E, Wroblewski K, Sentongo T (2017) Effects of chromium on glucose tolerance in infants receiving parenteral nutrition therapy. Nutr Clin Pract. https://doi.org/10.1177/0123456789123456

  • Chen NSC, Tsai A, Duer IA (1973) Effects of chelating agents on chromium absorption in rats. J Nutr 103(8):1182–1186

    CAS  PubMed  Google Scholar 

  • Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elemendorf JS (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol 20(4):857–870. https://doi.org/10.1210/me.2005-0255

    CAS  PubMed  Google Scholar 

  • Chen Y, Watson HM, Gao J, Sinha SH, Cassady CJ, Vicent JB (2011) Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. J Nutr 141(7):1225–1232. https://doi.org/10.3945/jn.111.139147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Commission SCOFOE (2002) Opinion of the scientific committee on food on the tolerable upper intake level of iodine. Bruxelles: European Commission. http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf

  • Dong F, Kandadi MR, Ren J (2008) Sreejayan. Chromium (D-phenylalanine)3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice. J Nutr 138(10):1846–1851

    CAS  PubMed  Google Scholar 

  • Ducros V (1992) Chromium metabolism. A literature review. Biol Trace Elem Res 32:65–77

    CAS  PubMed  Google Scholar 

  • Eastmond DA, MacGregor JT, Slesinski RS (2008) Trivalent chromium: assessing the Genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 38(3):173–190. https://doi.org/10.1080/10408440701845401

    CAS  PubMed  Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2014) Scientific opinion on dietary reference values for chromium. EFSA J 12(10):1–25. https://doi.org/10.2903/j.efsa.2014.3845

    CAS  Google Scholar 

  • Ensminger M, Oldfield J, Heinemann W (1990) Nutrients/metabolism. In: Feeds and nutrition. The Ensminger Publishing Company, Clovis, pp 90–95

    Google Scholar 

  • Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, Neumiller JJ, Nwankwo R, Verdi CL, Urbanski P, Yancy WS Jr (2013) American Diabetes Association.Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 36(11):3821–3842. https://doi.org/10.2337/dc13-2042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fairweather-tait SJ (1992) Bioavailability of trace elements. Food Chem 43(3):213–217

    CAS  Google Scholar 

  • Gaméz AA, Saenz RB, Morales EM (2002) El cromo como elemento essencial en los humanos. Rev Costarric de Cienc Med 23(1–2):55–68

    Google Scholar 

  • Goldstein BJ (2002) Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. J Clin Endocrinol Metab 87(6):2474–2480

    CAS  PubMed  Google Scholar 

  • Guimarães MM, Carvalho ACMS, Silva MS (2013) Chromium nicotinate has no effect on insulin sensitivity, glycemic control, and lipid profile in subjects with type 2 diabetes. J Am Coll Nutr 32(4):243–250. https://doi.org/10.1080/07315724.2013.816598

    CAS  PubMed  Google Scholar 

  • Hajifaraji M, Leeds AR (2008) The effect of high and low glycemic index diets on urinary chromium in healthy individuals: a cross-over study. Arch Iran Med 11(1):57–64. 08111/AIM.0014

    Google Scholar 

  • Harani H, Otmane A, Makrelouf M, Ouadahi N, Abdi A, Berrah A, Zenati A, Alamir B, Koceir EA (2012) Évaluation primaire du statut antioxydant 669oligominéral chez le patient diabétique de type 2 algérien: intérêt particulier du manganèse et du chrome. Ann Biol Clin 70(6):669–677

    CAS  Google Scholar 

  • Hininger A, Benaraba R, Osman M, Faure H, Roussel AM, Anderson RA (2007) Safety of trivalent chromium complexes: no evidence for DNA damage in human HaCaT keratinocytes. Free Radic Biol Med 42(12):1759–1765. https://doi.org/10.1016/j.freeradbiomed.2007.02.034

    CAS  PubMed  Google Scholar 

  • Hua Y, Clark S, Ren J, Srejavayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23(4):313–319. https://doi.org/10.1016/j.jnutbio.2011.11.001

    CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2012) Arsenic, metals, fibres, and dusts. In: A review of human carcinogens, IARC monographs on the evaluation of carcinogenic risks to humans, vol 100C. International Agency for Research on Cancer, Lyons

    Google Scholar 

  • Institute of Medicine (IOM) (1990) Nutrition during pregnancy. The National Academies Press, Washington, 468 p

    Google Scholar 

  • Institute of Medicine (IOM) (2001) Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. The National Academies Press, Washington, 773 p

    Google Scholar 

  • Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296(6):1183–1194. https://doi.org/10.1152/ajpendo.90899.2008

    CAS  Google Scholar 

  • Jeejeebhoy KN et al (1977) Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 30(4):531–538

    CAS  PubMed  Google Scholar 

  • Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M (2011) A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res 89(3):604–613. https://doi.org/10.1093/cvr/cvq360

    CAS  PubMed  Google Scholar 

  • Kim HN, Song SW (2014) Concentrations of chromium, selenium, and copper in the hair of viscerally obese adults are associated with insulin resistance. Biol Trace Elem Res 158(2):152–157. https://doi.org/10.1007/s12011-014-9934-6

    CAS  PubMed  Google Scholar 

  • Kirman CR, Aylward LL, Suh M, Harris MA, Thompson CM, Haws LC, Hays SM (2013) Physiologically based pharmacokinetic model for humans orally exposed to chromium. Chem Biol Interact 204(1):13–27. https://doi.org/10.1016/j.cbi.2013.04.003

    CAS  PubMed  Google Scholar 

  • Laschinsky N, Kottwitz K, Freund B, Dresow B, Fischer R, Nielsen P (2012) Bioavailability of chromium(III)-supplements in rats and humans. Biometals 25(5):1051–1060. https://doi.org/10.1007/s10534-012-9571-5

    CAS  PubMed  Google Scholar 

  • Lau FC, Bagchi M, Sen CK, Bagchi D (2008) Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem 317(1-2):1–10. https://doi.org/10.1007/s11010-008-9744-2

    CAS  PubMed  Google Scholar 

  • Levina A, Pham T, Lay PA (2016) Binding of chromium (III) to transferrin could be involved in detoxification of dietary chromium (III) rather than transport of an essential trace element. Angew Chem Int Ed Eng 55(28):8104–8107. https://doi.org/10.1002/anie.201602996

    CAS  Google Scholar 

  • Mccormick DB (2012) Vitamin / trace mineral supplements for the elderly. Adv Nutr 3(6):822–824. https://doi.org/10.3945/an.112.002956

    PubMed  PubMed Central  Google Scholar 

  • Mertz W (1992) Chromium. History and nutritional importance. Biol Trace Elem Res 32:3–8

    CAS  PubMed  Google Scholar 

  • Myers MGJR, White MF (1993) The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains. Diabetes 42(5):643–650

    CAS  PubMed  Google Scholar 

  • National Toxicology Program (2010) NTP toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 556:1–194

    Google Scholar 

  • Newman HAI, Leighton RF, Lanese RR, Freedland NA (1978) Serum chromium and angiographically determined coronary artery disease. Clin Chem 24(4):541–544

    CAS  PubMed  Google Scholar 

  • Ohh SJ, Lee JY (2005) Dietary chromium-methionine chelate supplementation and animal performance. Asian Australas J Anim Sci 18(6):898–907

    CAS  Google Scholar 

  • Onakpoya I, Posadzki P, Ernst E (2013) Chromium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. Obes Rev 14(6):496–507. https://doi.org/10.1111/obr.12026

    CAS  PubMed  Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52(1):1–18

    CAS  Google Scholar 

  • Peng Z, Qiao W, Wang Z, Dai Q, He J, Guo C, Xu J, Zhou A (2010) Chromium improves protein deposition through regulating the mRNA levels of IGF-1, IGF-1R, and Ub in rat skeletal muscle cells. Biol Trace Elem Res 137(2):226–234. https://doi.org/10.1007/s12011-009-8579-3

    CAS  PubMed  Google Scholar 

  • Press RI, Geller J, Evans GW (1990) The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. West J Med 152(1):41–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quarles JRCD, Marcus RK, Brumaghim JL (2011) Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. J Biol Inorg Chem 16(6):913–992. https://doi.org/10.1007/s00775-011-0792-9

    CAS  PubMed  Google Scholar 

  • Rafiei R, Habyby Z, Fouladi L, Najafi S, Asgary S, Torabi Z (2014) Chromium level in prediction of diabetes in pre-diabetic patients. Adv Biomed Res 3:235. https://doi.org/10.4103/2277-9175.145737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran K, Manikandan S, Nair LD et al (2015) Serum chromium levels in type 2 diabetic patients and its association with Glycaemic control. J Clin Diagn Res 9(11):OC05–OC08. https://doi.org/10.7860/JCDR/2015/16062.6753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rink C, Roy S, Khanna S, Rink T, Bagchi D, Sen CK (2006) Transcriptome of the subcutaneous adipose tissue in response to oral supplementation of type 2 Leprdb obese diabetic mice with niacin-bound chromium. Physiol Genomics 27(3):370–379

    CAS  PubMed  Google Scholar 

  • Rocha GHO, Steinbach C, Munhoz JR, Madia MAO, Faria JK, Hoeltgebaum D, Barbosa F Jr, Batista BL, Souza VCO, Nerilo SB, Bando E, Mossini SAG, Nishiyama P (2016) Trace metal levels in serum and urine of a population in southern Brazil. J Trace Elem Med Biol 35:61–65

    CAS  PubMed  Google Scholar 

  • Roussel AM, Andriollo-Sanchez M, Ferry M, Bryden NA, Anderson RA (2007) Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr 98(2):326–331. https://doi.org/10.1017/S000711450770168X

    CAS  PubMed  Google Scholar 

  • Santos CA, Fonseca J, Carolino E, Guerreiro AS (2017) Low serum chromium is rare in patients that underwent endoscopic gastrostomy for long term enteral feeding. Arq Gastroenterol. In press, Epub May 18, 2017. https://doi.org/10.1590/s0004-2803.201700000-25

    PubMed  Google Scholar 

  • Scheepers PT, Heussen GA, Peer PG, Verbist K, Anzion R, Willems J (2008) Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring. Toxicol Lett 178(3):185–190. https://doi.org/10.1016/j.toxlet.2008.03.013

    CAS  PubMed  Google Scholar 

  • Schroeder HA (1969) Serum cholesterol and glucose levels in rats fed refined and less refined sugars and chromium. J Nutr 97(2):237–242

    CAS  PubMed  Google Scholar 

  • Schroeder HA, Nason AP, Tipton IH (1970) Chromium deficiency as a factor in atherosclerosis. J Chronic Dis 23(2):123–142

    CAS  PubMed  Google Scholar 

  • Schwarz K, Mertz W (1959) Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys 85:292–295

    CAS  PubMed  Google Scholar 

  • Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V (2011) Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol 25(3):143–149. https://doi.org/10.1016/j.jtemb.2011.03.003

    CAS  Google Scholar 

  • Simonoff M, Llabador Y, Hamon C, Peers AM, Simonoff GN (1984) Low plasma chromium in patients with coronary artery and heart diseases. Biol Trace Elem Res 6(5):431–439. https://doi.org/10.1007/BF02989260

    CAS  PubMed  Google Scholar 

  • Sreejayan N, Lin Y, Hassid A (2002) NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B–mediated mechanism. Arterioscler Thromb Vasc Biol 22(7):1086–1092

    CAS  PubMed  Google Scholar 

  • Stearns DM, Silveira SM, Wolf KK, Luke AM (2002) Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutat Res 513(1-2):135–142

    CAS  PubMed  Google Scholar 

  • Stoecker BJ (1999) Chromium. In: Shils ME, Olson JA, Shike M et al (eds) Modern nutrition in health and disease. Williams & Wilkins Company, Baltimore, pp 277–282

    Google Scholar 

  • Stollenwerk KG, GROVE DB (1985) Reduction of hexavalent chromium in water samples acidified for preservation. J Environ Qual 14(3):396–399

    CAS  Google Scholar 

  • Suksomboon N, Poolsup N, Yuwanakorn A (2014) Systematic review and meta-analysis of the efficacy and safety of chromium. J Clin Pharm Ther 39(3):292–306. https://doi.org/10.1111/jcpt.12147

    CAS  PubMed  Google Scholar 

  • Vincent JB (1999) Mechanisms of chromium action: low-molecular-weight chromium binding substance. J Am Coll Nutr 18(1):6–12

    CAS  PubMed  Google Scholar 

  • Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58(3 Pt 1):67–72

    CAS  PubMed  Google Scholar 

  • Wang ZQ, Zhang XH, Russell JC, Hulver M, Cefalu WT (2006) Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. J Nutr 136(2):415–420

    CAS  PubMed  Google Scholar 

  • Wang S, Wang J, Zhang X, Hu L, Fang Z, Huang Z, Shi P (2016) Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis. Biometals 29(5):881–892. https://doi.org/10.1007/s10534-016-9960-2

    CAS  PubMed  Google Scholar 

  • White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269(1):1–5

    CAS  Google Scholar 

  • Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451

    CAS  PubMed  Google Scholar 

  • Wiegand HJ, Ottenwälder H, Bolt HM (1984) The reduction of chromium (VI) to chromium (III) by glutathione: an intracellular redox pathway in the metabolism of the carcinogen chromate. Toxicology 33(3-4):341–348

    CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2010) WHO Handbook for Guideline Development. World Health Organization, Geneva. 56 p

    Google Scholar 

  • World Health Organization (WHO) (2011) Guideline: Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age. World Health Organization, Geneva. 25 p

    Google Scholar 

  • World Health Organization (WHO) (2012) Guideline: Daily iron and folic acid supplementation in pregnant women. World Health Organization, Geneva. 27 p

    Google Scholar 

  • Yen CLE, Stone SJ, Koliwad S, Harris C, Farese RV (2008) Thematic review series: glycerolipids DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49(11):2283–2301. https://doi.org/10.1194/jlr.R800018-JLR200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yerlikaya HF, Toker A, Aribas A (2013) Serum trace elements in obese women with or without diabetes. Indian J Med Res 137(2):339–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelicoff JT, Thomas P (1998) Immunotoxicology of environmental and occupational metals. CRC Press, Boca Raton. 382p

    Google Scholar 

  • Zhang M, Hu T, Zhang S, Zhou L (2015) Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci Rep 5:18495. https://doi.org/10.1038/srep18495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35(1):49–56. https://doi.org/10.1038/ng1225

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilia Mendonça Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guimarães, M.M., Silva, M.S., Alves, A.G.P., Carvalho, B.A., de Souza Neto, M.A., Trindade, N.R. (2019). Importance of Chromium in the Diet. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-55387-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55387-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55386-3

  • Online ISBN: 978-3-319-55387-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics