Skip to main content
Log in

No meaningful increase in urinary tubular dysfunction markers in a population with 3μg cadmium/g creatinine in urine

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The critical Cd exposure level to induce tubular dysfunctions is a focus of public concern among general populations in Japan. To answer this question, one group each (about 1000 adult women/area) in nonpolluted areas with high (Area H) and low Cd exposure (Area L) was obtained, and 742 strictly age-matched pairs of never-smoking adult women were selected for comparison. Cd, α1-MG (microglobulin) and β2-MG in urine were taken as markers of exposure and tubular dysfunction, respectively. Geometric mean Cd levels as corrected for creatinine (Cdcr) was greater than three times higher in Area H (2.8 μg/g cr) than in Area L (0.8 μg/g cr). Nevertheless, β2-MGcr did not differ between the two areas (125 μg/g cr for Area H vs 118 μg/g cr for Area L). α1-MGcr was only marginally higher in Area H (2.8 mg/g cr) than in Area L (2.1 mg/g cr), with no biomedical significance. Results were essentially the same when analyses were conducted with noncorrected observed values or values corrected for a specific gravity. Thus, the effects of Cd exposure in Area H on renal tubular function should be essentially nil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, International Programme on Chemical Safety, Environmental Health Criteria 134. Cadmium, World Health Organization, Geneva (1992).

    Google Scholar 

  2. WHO, International Programme on Chemical Safety, Environmental Health Criteria 135. Cadmium—Environmental Aspects, World Health Organization, Geneva (1992).

    Google Scholar 

  3. Environment Agency, Countermeasures Against Environmental Pollution with Cadmium, The Environmental Agency, the Government of Japan, Tokyo, pp. 167–168 (1972) (in Japanese).

    Google Scholar 

  4. M. Ikeda, T. Ezaki, T. Tsukahara, and J. Moriguchi, Dietary cadmium intake in polluted and non-polluted areas in Japan in the past and in the present, Int. Arch. Occup. Environ. Health, 77, 227–234 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. L. Järup, M. Berglund, C. G. Elinder, G. Nordberg, and H. Vahter, Health effects of cadmium exposure: a review of the literature and a risk estimate, Scand. J. Work Environ. Health 24 (Suppl.), 1–51 (1998).

    PubMed  Google Scholar 

  6. T. Ezaki, T. Tsukahara, J. Moriguchi, et al., No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey, Int. Arch. Occup. Environ. Health 76, 186–196 (2003).

    PubMed  CAS  Google Scholar 

  7. T. Tsukahara, T. Ezaki, J. Moriguchi, et al., No significant effect of iron deficiency on cadmium body burden or kidney dysfunction among women in general populations in Japan, Int. Arch. Occup. Environ. Health 76, 275–281 (2003).

    PubMed  CAS  Google Scholar 

  8. S. Jackson, Creatinine in urine as an index of urinary excretion rate, Health Phys. 12, 843–850 (1966).

    Article  PubMed  CAS  Google Scholar 

  9. L. Levine, and J. P. Fahy, Evaluation of urinary lead concentrations. I. The significance of the specific gravity, J. Ind. Hyg. Toxicol. 27, 217–223 (1945).

    CAS  Google Scholar 

  10. S. G. Rainsford, and T. A. Lloyd Davies, Urinary excretion of phenol by men exposed to benzene: a screening test, Br. J. Ind. Med. 22, 21–26 (1965).

    PubMed  CAS  Google Scholar 

  11. World Health Organization, Biological Monitoring of Chemical Exposure in the Workplace, Volume 1, 3.1 Cadmium, World Health Organization, Geneva, pp. 52–90 (1996).

    Google Scholar 

  12. K. Ichihara, Comparison of two regression parameters and two correlation coefficients, in Statistics for Bioscience, Nanko-do Publishers, Tokyo, pp. 218–223, and 233 (1990) (in Japanese).

    Google Scholar 

  13. T. Watanabe, A. Koizumi, H. Fujita, M. Kumai, and M. Ikeda, Cadmium levels in the blood of inhabitants in nonpolluted areas in Japan with special references to aging and smoking, Environ. Res. 31, 472–483 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. M. Ikeda, Z.-W. Zhang, S. Shimbo et al., Urban population exposure to lead and cadmium in east and south-east Asia, Sci. Total Environ. 249, 373–384 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. M. Ikeda, J. Moriguchi, T. Ezaki et al., Smoking-induced urinary cadmium levels among Japanese women, Int. Arch. Occup. Environ. Health 78, 533–540 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. J. Moriguchi, T. Ezaki, T. Tsukahara, et al., Decrease in urine specific gravity and urinary creatinine in elderly women, Int. Arch. Occup. Environ. Health 78, 438–445 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. L. Alessio, A. Berlin, A. Dell'Orto, F. Toffoletto, and I. Ghezzi, Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators, Int. Arch. Occup. Environ. Health 55, 99–106 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. T. Hosoya, R. Toshima, K. Icida, A. Tabe, and O. Sakai, Changes in renal function with aging among Japanese, Intern. Med. 34, 520–527 (1995).

    PubMed  CAS  Google Scholar 

  19. B. E. C. Nordin, A. G. Need, T. Steurer, H. A. Morris, B. E. Chatterton, and M. Horowitz, Nutrition, osteoporosis, and aging, Ann. NY Acad. Sci. 854, 336–351 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. M. Worsfold, M. W. J. Davie, and M. J. Haddaway, Age-related changes in body composition, hydroxyproline, and creatinine excretion in normal women, Calcif. Tissue Int. 64, 40–44 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. J. Moriguchi, T. Ezaki, T. Tsukahara, et al., Effects of aging on cadmium and tubular dysfunction markers in urine from adult women in non-polluted areas, Int. Arch. Occup. Environ. Health 78, 446–451 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. M. Ikeda, T. Ezaki, T. Tsukahara, et al., Threshold levels of urinary cadmium in relation to increase in urinary β2-microglobulin among general Japanese populations, Toxicol. Lett. 137, 135–141 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. M. Ikeda, T. Ezaki, J. Moriguchi et al., Threshold urinary cadmium level to induce a sharp increase in β2-microglobulin level in urine of general population, Tohoku J. Exp. Med. 205, 247–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. H. Horiguchi, E. Oguma, S. Sasaki, et al., Environmental exposure to cadmium as a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers, Environ. Res. 97, 83–92 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. H. Nakadaira and S. Nishi, Effects of low-dose cadmium exposure on biological examinations, Sci. Total Environ. 308, 49–62 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. K. Aoshima, Health effects of low-dose cadmium exposure; cadmium exposure and renal dysfunction among residents in Jinzu river basin, Jpn. J. Hyg. 56, 82–83 (2001) (In Japanese with an English abstract).

    Google Scholar 

  27. K. Nogawa, K. Kido, Y. Yamada, et al. α1-Microglobulin in urine as an indicator of renal tubular damage caused by environmental cadmium exposure, Toxicol. Lett. 22, 63–68 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. C. Tohyama, E. Kobayashi, H. Saito, N. Sugihara, A. Nakao, and Y. Mitane, Urinary α1-microglobulin as an indicator protein of renal tubular dysfunction caused by environmental cadmium exposure, J. Appl. Toxicol. 6, 171–178 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. C. Tohyama, E. Kobayashi, H. Saito, N. Sugihara, A. Nakano, and Y. Mitane, Urinary α1-microglobulin as an indicator protein of renal tubular dysfunction caused by environmental cadmium exposure, J. Appl. Toxicol. 6, 171–178 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. M. Kasuya, K. Aoshima, T. Katoh, et al., Natural history of Itai-itai disease: a long-term observation on the clinical and laboratory findings in patients with Itai-itai disease, in Proceedings of the Seventh International Cadmium Conference, S. A. Hiscock, H. Morrow, and R. A. Volpe, eds., Cadmium Association, London, pp. 180–192 (1992).

    Google Scholar 

  31. J. Moriguchi, T. Ezaki, T. Tsukahara, et al., α1-Microglobulin levels and correlation with cadmium and other metals in urine of non-smoking women among general populations in Japan, Toxicol. Environ. Chem. 87, 119–133 (2005).

    CAS  Google Scholar 

  32. L. Järup, L. Hellström, T. Alfvén, et al., Low level exposure to cadmium and early kidney damage: the OSCAR study, Occup. Environ. Med. 57, 668–672 (2000).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, M., Ezaki, T., Moriguchi, J. et al. No meaningful increase in urinary tubular dysfunction markers in a population with 3μg cadmium/g creatinine in urine. Biol Trace Elem Res 113, 35–44 (2006). https://doi.org/10.1385/BTER:113:1:35

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:113:1:35

Index Entries

Navigation