Skip to main content
Log in

Trace elements as fingerprint of lake of provenance and of species of some native and exotic fish of northern Patagonian lakes

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A survey of trace element contents in fish muscle and liver was performed in different lakes of two northern Patagonian national parks: Nahuel Huapi and Los Alerces national parks. The aim of the work was to obtain the first set of reference data on elements that are not liable to be disturbed by human activities and to identify compositional patterns related to the species and site of collection. The species studied are native creole perch and velvet catfish and exotic brown trout, rainbow trout, and brook trout. The elements analyzed are Br, Cs, Fe, Rb, Se, Na, and Zn. Trace elements in muscle of brown trout, rainbow trout, and creole perch showed statistical patterns that allow one to identify the national park of origin, as well as which of the lakes (Traful, Espejo Chico, or the Nahuel Huapi-Moreno system) of the Nahuel Huapi National Park from which they come. Contents in the liver provide similar but less clear patterns than contents in muscle; however, in some particular cases, they provide additional information. Trace element contents in muscle are also good indicators of the species collected within a lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Heath, Water Pollution and Fish Physiology, CRC, Boca Raton, FL (1987).

    Google Scholar 

  2. J. M. McKim, Physiological and biochemical mechanisms that regulate the accumulation and toxicity of environmental chemicals in fish, in Bioavailability, J. M. Hamelink, P. F. Landrum, H. L. Bergman, and W. H. Benson, eds., Lewis/CRC Boca Raton, FL (1994).

    Google Scholar 

  3. L. Kosta, A. R. Byrne, P. Stegnar, and V. Zelenko, Uptake of Mercury by Plants and Its Distribution in Living Organisms in an Environment with Increased Concentration of This Element, IAEA Report IAEA-PL-469/5 (1972).

  4. F. B. Eddy, Effect of stress on osmotic and ionic regulation in fish, in Stress and Fish, A.D. Pickering, ed., Academic, New York (1981).

    Google Scholar 

  5. M. Jaffar and M. Ashraf, Selected trace element concentrations in different tissues of fish from coastal waters in Pakistán (Arabian Sea), Indian J. Mar. Sci. 17, 231–322 (1988).

    CAS  Google Scholar 

  6. H. H. Du Preez and G. J. Steyn, A preliminary investigation of the concentration of selected metals in the tissues and organs of tigerfish (Hydrocynus vittatus) from the Olifants river, Kruger National Park, South Africa, Water 18, 131–136 (1992).

    Google Scholar 

  7. E. Fjield and S. Rognerud, Use of path analysis to investigate mercury accumulation in brown trout (Salmo trutta) in Norway and the influence of environmental factors, Can. J. Fish. Aquat. Sci. 50, 1158–1167 (1993).

    Google Scholar 

  8. M. N. Futter, Pelagic food web structure influences probability of mercury contamination in lake trout (Salvelinus namaycush), Sci. Total Environ. 145, 7–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. E. Sindayigaya, R. Van Cauwenbergh, H. Robberecht, and H. Deelstra, Copper, zinc, managanese, iron, lead, cadmium, mercury and arsenic in fish from lake Tanganika, Burundi, Sci. Total Environ. 144, 103–115 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. R. M. Neumann and S. M. Ward, Methylmercury in fish from Owyhee Reservoir in Southeast Oregon: scientific uncertainty and fish advisories, Sci. Total Environ. 204, 205–214 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. C.R. Phillips, D.J. Heilprin, and M.A. Hart, Mercury accumulation in barred sand bass (Paralabrax nebulifer) near a large waste water outfall in the Southern California Bight, Mar. Pollut. Bull. 43(2), 96–102 (1997).

    Article  Google Scholar 

  12. A.E. Pinkney, D.T. Logan, and H.T. Wilson, Mercury concentrations in pond fish in relation to a coal-fired power plant, Arch. Environ. Contam. Toxicol. 33, 222–229 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. B.C. Scudder, D.J. Sullivan, F.A. Fitzpatrick, and S.J. Rheaume, Trace Elements and Synthetic Organic Compounds in Biota and Streambed Sediment of the Western Lake Michigan Drainages 1992–1995, US Geological Society Report 97-4192 (1997).

  14. J.F. Doyon, R. Schetagne, and R. Verdon, Different mercury bioaccumulation rates between sympatric populations of dwarf and normal lake white fish (Coregonus clupeaformis) in the Lake La Grande complex watershed, James Bay, Quebec, Biogeochemistry 40, 203–216 (1998).

    Article  CAS  Google Scholar 

  15. H.A. Kehrig, O. Malm, and I. Moreira, Mercury in a widely consumed fish Micropogonias furnieri (Demarest, 1823) from four main Brazilian estuaries, Sci. Total Environ. 213, 263–271 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. S. Ribeiro Guevara, J. Massaferro, G. Villarosa, and M.A. Arribére, Heavy metal contamination in sediments of Nahuel Huapi lake, Nahuel Huapi National Park, Northern Patagonia, Argentina, Water, Air Soil Pollut. 137, 21–44 (2002).

    Article  CAS  Google Scholar 

  17. S. Ribeiro Guevara, D.F. Bubach, and M.A. Arribére, Mercury in lichens of Nahuel Huapi National Park, Patagonia, Argentina, J. Radioanal. Nucl. Chem. 261 (3), 679–687 (2004).

    Article  CAS  Google Scholar 

  18. S. Ribeiro Guevara, D.F. Bubach, P.H. Vigliano, M.A. Arribére, and G. Lippolt, Heavy metal and other trace elements in native mussel Diplodon sp. from Northern Patagonian lakes, Argentina, Biol. Trace Element Res. 102(1–3), 245–263 (2004).

    Article  Google Scholar 

  19. S. Ribeiro Guevara, M.A. Arribére, D.F. Bubach, et al., Silver contamination on abiotic and biotic compartments of lake Nahuel Huapi National Park lakes, Patagonia, Argentina, Sci. Total Environ. 336(1–3), 119–134 (2005).

    CAS  Google Scholar 

  20. S. Ribeiro Guevara, A.P. Rizzo, R.S. Sánchez, and M.A. Arribére, Heavy metals in Northern Patagonia lakes from short sediment cores analysis, J. Radioanal. Nucl. Chem. 275(3), 481–493 (2005).

    Article  CAS  Google Scholar 

  21. R. Quirós, Relationships between air temperature, depth, nutrients, and chlorophyll in 103 Argentinian lakes. Verh. Int. Ver. Limnol. 23, 647–658 (1988).

    Google Scholar 

  22. F. Pedrozo, S. Chillrud, P. Temporetti, and M.D. Limitation in rivers and lakes of northern Patagonian Andes (39.5°–42°S; 71°W) (Rep. Argentina). Verh. Int. Verein. Limnol. 22, 207–214 (1993).

    Google Scholar 

  23. R. Quiróz and E. Drago, esRelaciones entre variables f en lagos patagónicos, Rev. Asoc. Cienc. Nat. Litor. St. Tome. 16, 181–199 (1985).

    Google Scholar 

  24. M. Pascual, P.J. Macchi, J. Urbanski, et al., Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data, Biol. Invasions 4, 101–113 (2002).

    Article  Google Scholar 

  25. P.H. Vigliano and M.F. Alonso, Salmonid introductions in Patagonia: a mixed blessing, in: Ecological and Genetic Implications of Aquaculture Activities, T.M. Bert, ed., Kluwer Academic, Nordstadt, The Netherlands, in press.

  26. P.H. Vigliano, P. Macchi, M. Denegri, et al., Un diseño modificado y procedimiento de calado de redes agalleras para estudios cuali-cuantitativos de peces por estratos de profundidad en lagos araucanos, Natura Neotrop. 30, 1–11 (1999).

    Google Scholar 

  27. P.J. Macchi, V.E. Cussac, M.F. Alonso, and M.A. Denegri, Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in Northern Patagonia, Ecol. Freshwater Fish. 8, 227–236 (1999).

    Article  Google Scholar 

  28. B. Markert, Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems, Vegetatio 103, 1–30 (1992).

    Google Scholar 

  29. R. Eisler, Selenium hazards to fish, wildlife, and invertebrates: a synoptic review, in Contaminant Hazard Reviews, Report 5, USGS/BRD/BSR-1999-0002 (1999).

  30. R. Eisler, Silver hazards to fish, wildlife, and invertebrates: a synoptic review, in Contaminant Hazard Reviews, Report 32, USGS/BRD/BSR-1999-0002 (1999).

  31. R. Eisler, Zinc hazards to fish, wildlife, and invertebrates: a synoptic review, in Contaminant Hazard Reviews, Report 26, USGS/BRD/BSR-1999-0002 (1999).

  32. R.A. Copeland, R.H. Beethe, and W.W. Prater, Trace Element Distribution in Lake Michigan Fish: A Baseline Study with Calculations of Concentration Factors and Equilibrium Radioisotope Distributions, Special Report No. 2, Environmental Research Group Inc., Ann Arbor, MI (1973).

    Google Scholar 

  33. De Beers Canada Mining Inc., Snap Lake Diamond Project, Environmental Assessment Report. Downloaded from the Internet (2002).

  34. K.S. Park, N.B. Kim, H.J. Woo, Y.Y. Yoon, and K.Y. Lee, An environmental research on trace elements in freshwater fish by neutron activation analysis, Biol. Trace Element Res. 26–27, 347–354 (1990).

    Google Scholar 

  35. K.S. Park, N.B. Kim, Y.S. Kim, K.Y. Lee, S.K. Chun, and Y.Y. Yoon, A survey of trace elements in freshwater fish and rice along the Han river by neutron activation analysis. Biol. Trace Element Res. 43–45, 229–237 (1994).

    Article  Google Scholar 

  36. C.O. Hatcher, R.E. Ogawa R.E., T.P. Poe, and J.R.P. French, Trace elements in lake sediment, macrozoobenthos, and fish near a coal ash disposal basin, J. Freshwater Ecol. 7(3), 257–269 (1992).

    CAS  Google Scholar 

  37. M. Yamazaki, Y. Tanizaki, and T. Shimokawa, Silver and other trace elements in a freshwater fish, Carasius auratus langsdorfii, from the Asakawa river in Tokyo, Japan, Environ. Pollut. 94(1), 83–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Z. Sandor, I. Csengeri, M.B. Oncsik, M.N. Alexis, and E. Zubcova, Trace metal levels in freshwater fish sediment and water, Environ. Sci. Pollut. Res. 8, 1–4 (2001).

    Article  Google Scholar 

  39. M.D.K. Abo-Rady, Anreicherung von Schwermetallen in Bachforellen im Vergleich zu Wasserpflanzen und Sediementen, Z. Lebensm.-Unters.-Forsch. 177, 339–344 (1983).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Ishikawa, K. Yamada, N. Nonaka, K. Maruno, and T. Ueda, Size-dependent concentrations of radiocesium and stable elements in muscles of flat flounder Hippoglossoides dubius, Fish. Sci. 61 (6), 981–985 (1995).

    CAS  Google Scholar 

  41. P.J. Vuorinen, T. Rantio, A. Witick, and M. Vuorinen, Organichlorines and heavy metals in sea trout (Salmo trutta M. Trutta) in the gulf of Bothnia off the coast of Finland, Aqua Fenn. 24(1), 29–35 (1994).

    CAS  Google Scholar 

  42. L.T. Sun and S.J. Jeng, Comparative Zinc concentrations in tissues of common carp and other aquatic organisms, Zool. Studies 37(3), 184–190 (1998).

    CAS  Google Scholar 

  43. R.S. Stemberger and C.Y. Chen, Fish tissue metals and zooplankton assemblages of northeastern U.S. lakes. Can. J. Fish. Aquat. Sci. 55, 339–352 (1998).

    Article  CAS  Google Scholar 

  44. P.A. Olsvik, P. Gundersen, A.A. Andersen, and K.E. Zachariassen, Metal accumulation and metallothionein in two populations of brown trout, Salmo trutta, exposed to different natural water environments during a run-off episode, Aquat. Toxicol. 50, 301–316 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribére, M.A., Guevara, S.R., Bubach, D.F. et al. Trace elements as fingerprint of lake of provenance and of species of some native and exotic fish of northern Patagonian lakes. Biol Trace Elem Res 111, 71–95 (2006). https://doi.org/10.1385/BTER:111:1:71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:71

Index Entries

Navigation