Skip to main content
Log in

Selenium supplement alleviated the toxic effects of excessive iodine in mice

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The relationship between the iodine intake level of a population and the occurrence of thyroid diseases is U-shaped. When excessive iodine is ingested, hypothyroidism or hyperthyroidism associated with goiter might develop. The aim of the study was to evaluate the effect of Se supplementation on the depression of type 1 deiodinase (D1) and glutathione peroxidase (GSHPx) activities caused by excessive iodine. D1 activity was assayed by the method with 125I-rT3 as a substrate. Compared to the effect of iodine alone, iodine in combination with selenium increased the activities of D1 and GSHPx. The addition of selenium alleviated the toxic effects of iodine excess on the activities of D1 and GSHPx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen, D. Liu, and Y. Yang, High iodine region and endemic iodine-induced goiter, Chin. J. Endemiol. 17, 385–386 (1998).

    Google Scholar 

  2. K. Y. Ge and G. Q. Yang, The epidemiology of selenium deficiency in the etiological study of endemic diseases in China, Am. J. Clin. Nutr. 57(2 Suppl.), 259S-263S (1993).

    PubMed  CAS  Google Scholar 

  3. K. Markou, N. Georgopoulos, V. Kyriazopoulou, and A. G. Vagenakis, Iodine-induced hypothyroidism, Thyroid 11, 501–510 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. E. Roti and E. D. Uberti, Iodine excessive and hyperthyroidism, Thyroid 11, 493–500 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. R. Tonglet, P. Bourdoux, T. Minga and A. M. Ermans, Efficacy of low oral doses of iodized oil in the control of iodine eficiency in Zaire, N. Engl. J. Med. 326, 236–241 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. J. Wolff and I. L. Chaikoff, Plasma inorganic iodide as a homeostatic regulator of thyroid function, J. Biol. Chem. 174, 555–564 (1948).

    CAS  PubMed  Google Scholar 

  7. T. Wu, J. Wang, and G. Liu, A new hypothesis about iodine-induced goiter and hyperthyroidism: deiodinase activity decrease theory, W. China Med. J 115, 405–408 (2000).

    Google Scholar 

  8. P. W. F. Fischer, M. R. L'Abbé, and A. Giroux, Colorimetric determination of total iodine in foods by iodide-catalyzed reduction of Ce4+. Anal Chem. 69, 687–689 (1986).

    CAS  Google Scholar 

  9. I. H. Watkinson, Fluorometric determination of selenium in biological material with 2,3-diaminonaphthalene, Anal. Chem. 38, 92–97 (1966).

    Article  PubMed  CAS  Google Scholar 

  10. M. R. L'Abbé, K. D. Trick, and J. L. Beare-Rogers, Dietary (n−3) fatty acids deficiency may affect rat heart, liver, and aorta protective enzyme activities and lipid peroxidation, J. Nutr. 121, 1331–1340 (1991).

    PubMed  Google Scholar 

  11. C. S. Hotz, B. Belonje, D. W. Fitzpatrick, et al., A method for the determination of type I iodothyronine deiodinase activity in liver and kidney using 125I-labelled reverse triiodothyronine as a substrate, Clin. Biochem. 29(5), 451–456 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. J. Zhao, P. Wang, L. Shang, K. M. Sullivan, F. van der Haar, and G. Maberly, Endemic goiter associated with high iodine intake, Am. J. Public Health 90 1633–1635 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. K. Norimichi, M. Horini, Y. Kenji, I. Norio, and K. Kimio, Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan, J. Clin. Endocrinol. Metab. 78, 393–397 (1994).

    Article  Google Scholar 

  14. P. Laurberg, P. I. Bulow, N. Knudsen, L. Ovesen, and S. Andersen, Environmental iodine intake affects the type of nonmalignant thyroid disease, Thyroid 11, 457–469 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. Köhrle, F. Schuppert, E. Fekete, and I. Dreher, Divergent expression of the selenoproteins type I 5′-deiodinase and glutathione peroxidase in human thyroid tissues, Exp. Clin. Endocrinol. Diabetes 104, 17–18 (1996).

    Google Scholar 

  16. G. Bermano, F. Nicol, J. A. Dyer, et al., Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats, Biochem. J. 311, 425–430 (1995).

    PubMed  CAS  Google Scholar 

  17. A. F. Howie, S. W. Walker, B. Akeson, J. R. Arthur, and G. J. Beckett, Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid hormone synthesis, Biochem. J. 308, 713–717 (1995).

    PubMed  CAS  Google Scholar 

  18. J. R. Arthur, Functional indicators of iodine and selenium status, Proc. Nutr. Soc. 58, 507–512 (1999).

    PubMed  CAS  Google Scholar 

  19. J. L. Leonard and J. Korhle, Intracellular Pathways of Iodothyroninemetabolism, 7th ed., Philadelphia, pp. 125–161 (1996).

  20. T. Bednarczuk, A. Pietrzykowski, M. Slon, and A. Nauman, Pharmacologic effect of excess iodine on type I thyroxine 5′-deiodinase activity in rat thyroid, Endokrynol. Pol. 44(4), 405–412 (1993).

    PubMed  CAS  Google Scholar 

  21. S. Anaderaud, J. Sundsfjord, and J. Aarbokke, Amiodarone inhibits the conversion of thyroxine to triiodothyronine in isolated rat hepatocytes, Endocrinology 115, 1605–1608 (1984).

    Google Scholar 

  22. G. J. Beckett, S. E. Beddows, P. C. Mourrice, F. Nicol, and J. R. Arthur, Inibition of hepatic deiodinase of thyroxine is caused by selenium deficiency in rats, Biochem. J. 248, 443–447 (1987).

    PubMed  CAS  Google Scholar 

  23. S. Vadhanavikit and H. E. Ganther, Effect of selenium depletion and repletion on hepatic 5′-deiodinase (type I), glutathione-S-transferase, and glutathione peroxidase in the rat, FASEB J. 4, A371 (1990) (abstract).

    Google Scholar 

  24. L. Lamas, M. L. Dorris, and A. Taurig, Evidence for a catalytic role for thyroid peroxidase in the conversion of diiodotyrosine to thyroxine, Endocrinology 90, 1417–1429 (1972).

    Article  PubMed  CAS  Google Scholar 

  25. S. Vadhanavikit and H. E. Ganther, Selenium requirements of rats hepatic and thyroidal 5′-deiodinase (type I) activities, J. Nutr. 123(6), 1124–1128 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Yang, XF., Guo, HL. et al. Selenium supplement alleviated the toxic effects of excessive iodine in mice. Biol Trace Elem Res 111, 229–238 (2006). https://doi.org/10.1385/BTER:111:1:229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:229

Index Entries

Navigation