Skip to main content
Log in

Effects of acute manganese chloride exposure on lipid peroxidation and alteration of trace metals in rat brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although manganese (Mn) is an essential element, exposure to excessive levels of Mn and its accumulation in the brain can cause neurotoxicity and extrapyramidal syndrome. We have investigated the differences in the accumulated levels of Mn, the degree of lipid peroxidation, and its effects on the levels of trace elements (Fe, Cu, and Zn) in various regions in the brain of rats having undergone acute Mn exposure. The rats in the dose—effect group were injected intraperitoneally (ip) with MnCl2 (25, 50, or 100 mg MnCl2/kg) once a day for 24 h. The Mn significantly accumulated (p<0.05) in the frontal cortex, corpus callosum, hippocampus, striatum, hypothalamus medulla, cerebellum, and spinal cord in each case. The rats in the timecourse group were ip injected with MnCl2 (50 mg MnCl2/kg) and then monitored 12, 24, 48, and 72 h after exposure. The Mn accumulated in the frontal cortex, corpus callosum, hippocampus, striatum hypothalamus, medulla, cerebellum, and spinal cord after these periods of time, In both the dose—effect and time-course studies, we observed that the concentration of malondialdehyde, an end product of lipid peroxidation, increased significantly in the frontal cortex, hippocampus, striatum, hypothalamus, medulla, and cerebellum. However, no relationship between the concentrations of Mn in the brain and the extent of lipid peroxidation was observed. In addition, we found that there was a significant increase (p<0.05) in the level of Fe in the hippocampus, striatum, hypothalamus, medulla, and cerebellum, but the Cu and Zn levels had not changed significantly. These findings indicated that Mn induces an increase in the iron level, which provides direct evidence for Fe-mediated lipid peroxidation in the rats' brains; these phenomena might play important roles in the mechanisms of Mn-induced neurotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Prohaska, Function of trace elements in brain metabolism, Physiol. Rev. 67, 858–901 (1987).

    PubMed  CAS  Google Scholar 

  2. A. Iregren, Manganese neurotoxicity in industrial exposures: proof of effects, critical exposure level, and sensitive tests, Neurotoxicology 20, 315–324 (1999).

    PubMed  CAS  Google Scholar 

  3. C. L. Keen and B. Lönnerdal, Toxicity of essential and beneficial metal ions: manganese, in Handbook of Metal—Ligand Interactions in Biological Fluids, G. Berthon, ed., Marcel-Dekker, New York, pp. 683–688 (1995).

    Google Scholar 

  4. P. K. Pal, A. Samii, and D. B. Calne, Manganese neurotoxicity: a review of clinical features, imaging and pathology, Neurotoxicology 20, 227–238 (1999).

    PubMed  CAS  Google Scholar 

  5. S. Montes, M. Alcaraz-Zubeldia, P. Muriel, and C. Rios, Striatal manganese accumulation induces changes in dopamine metabolism in the cirrhotic rat, Brain Res. 891, 123–129 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. M. Miele, P. A. Serra, G. Esposito, et al., Glutamate and catabolites of high energy phosphates in the striatum and brainstem of young and aged rats subchronically exposed to manganese, Aging Clin. Exp. Res. 12, 393–397 (2000).

    CAS  Google Scholar 

  7. A. H. Stokes, D. Y. Lewis, L. H. Lash, et al., Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis, Brain Res. 858, 1–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. M. A. Trush and T. W. Kensler, An overview of the relationship between oxidative stress and chemical carcinogenesis, Free Radical Biol. Med. 10, 201–209 (1991).

    Article  CAS  Google Scholar 

  9. R. G. Stevens and K. Nerishi, Iron and oxidative damage in human cancer, in Biological Consequences of Oxidative Stress: Implications for Cardiovascular Disease and Carcinogenesis, Oxford University Press, New York, pp. 138–161 (1992).

    Google Scholar 

  10. A. M. Papas, Determinants of antioxidant status in humans, Lipid 31, S77-S82 (1996).

    CAS  Google Scholar 

  11. R. A. Floyd, Role of oxygen free radicals in carcinogenesis and brain ischemia, FASEB J. 4, 2587–2597 (1990).

    PubMed  CAS  Google Scholar 

  12. J. T. Uotila, A. L. Kirkkola, M. Rorarius, R. J. Tuimala, and T. Metsa-Ketela, The total peroxyl radical-trapping ability of plasma and cerebrospinal fluid in normal and preeclamptic parturients, Free Radical Biol. Med. 5, 581–590 (1994).

    Article  Google Scholar 

  13. E. N. Drake and H. H. Sky-Peck, Discriminant analysis of trace element distribution in normal and malignant human tissues, Cancer Res. 49, 4210–4215 (1989).

    PubMed  CAS  Google Scholar 

  14. H. H. Sky-Peck, Trace metals and neoplasia, Clin. Physiol. Biochem. 4, 99–111 (1986).

    PubMed  CAS  Google Scholar 

  15. F. W. Sunderman, Jr., Metals and lipid peroxidation, Acta Pharmacol. Toxicol. 9, 248–255 (1986).

    Google Scholar 

  16. B. Halliwell and J. M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186, 1–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. S. H. Wong, J. A. Knight, S. M. Hopfer, O. Zaharia, C. N. Leach, Jr., and F. W. Sunderman, Jr., Lipoperoxides in plasma as measured by liquid—chromatographic separation of malondialdehyde-thiobarbituric acid adduct, Clin. Chem. 33, 214–220 (1987).

    PubMed  CAS  Google Scholar 

  18. M. C. Newland, Animal models of manganese's neurotoxicity, Neurotoxicology 20, 415–432 (1999).

    PubMed  CAS  Google Scholar 

  19. I. J. Yu, J. D. Park, et al., Manganese distribution in brains of Sprague-Dawley rats after 60 days of stainless steel welding-fume exposure, Neurotoxicology 24, 777–785 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. R. T. Ingersoll, E. B. Montgomery and H. V. Aposhian, Central nervous system toxicity of manganese: II. Cocaine or reserpine inhibits manganese concentration in the rat brain, Neurotoxicology 20, 467–476 (1999).

    PubMed  CAS  Google Scholar 

  21. J. C. Lai, M. J. Minski, A. W. Chan, T. K. Leung, and L. Lim, Manganese mineral interactions in brain, Neurotoxicology 20, 433–444 (1999).

    PubMed  CAS  Google Scholar 

  22. K. M. Eriksona, A. W. Dobsonb, D. C. Dormanc, and M. Aschner, Manganese exposure and induced oxidative stress in the rat brain Sci. Total Environ. 334–335, 409–416 (2004).

    Google Scholar 

  23. D. C. Dorman, M. F. Struve, D. Vitarella, F. L. Byerly, J. Goetz, and R. Miller, Neurotoxicity of manganese chloride in neonatal and adult CD rats following subchronic (21-day) high-dose oral exposure, J. Appl. Toxicol. 20, 179–187 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. A. Samaragiassi and A. Mutti, Peripheral biomarkers and exposure to manganese, Neurotoxicology 20, 401–406 (1999).

    Google Scholar 

  25. W. N. Sloot, J. Korf, J. F. Koster, L. E. De Wit, and J. B. Gramsbergen, Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo, Exp. Neurol. 138, 236–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. D. G. Graham, Comment on the commonality of manganese neurotoxicity and Parkinson's disease, Neurotoxicology 2, 387–388 (1981).

    PubMed  CAS  Google Scholar 

  27. F. S. Archibald and C. Tyree, Manganese poisoning and the attack of trivalent manganese upon catecholamines, Arch. Biochem. Biophys. 256, 638–650 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. M. T. Chen, S. J. Yiin, J. Y. Sheu, and Y. L. Huang, Brain lipid peroxidation and changes of trace metals in rats following chronic manganese chloride exposure, J. Toxicol. Environ. Health A 65, 305–316 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. S. Hussain and S. F. Ali, Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats, Neurosci. Lett. 261, 21–24 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. A. Y. Sun, W. L. Yang, and H. D. Kim, Free radical and lipid peroxidation in manganese-induced neuronal cell injury, Ann. NY Acad. Sci. 679, 358–363 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. C. J. Chen and S. L. Liao, Oxidative stress involves in astrocytic alterations induced by manganese, Exp. Neurol. 175, 216–225 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. O. Vajragupta, P. Boonchoong, Y. Sumanont, H. Watanabe, Y. Wongkrajang, and N. Kammasud, Manganese-based complexes of radical scavengers as neuroprotective agents, Bioorg. Med. Chem. 11, 2329–2337 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, MT., Cheng, GW., Lin, CC. et al. Effects of acute manganese chloride exposure on lipid peroxidation and alteration of trace metals in rat brain. Biol Trace Elem Res 110, 163–177 (2006). https://doi.org/10.1385/BTER:110:2:163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:110:2:163

Index Entries

Navigation