Skip to main content

Trace Elements and Neurodegenerative Diseases

  • Chapter
  • First Online:
Trace Elements in Brain Health and Diseases

Abstract

Lead, copper, and aluminum neurotoxicity is associated with numerous alterations including behavioral and neurochemical disruptions. Many studies evaluate the possible neurochemical disruption in the brain structures after acute and chronic Pb, Cu, and Mn-exposures and the possible effect on brain structures. Trace elements are related to neurobehavioral alterations. Using immunohistochemical stainings, many studies compared both acute and chronic exposures to heavy metals. The two models of Pb, Cu, and Mn-exposure showed obvious disruptions of many structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama H, Hosokawa M, Kametani F, Kondo H, Chiba M, Fukushima M, Tabira T (2012) Long-term oralintake of aluminium or zinc does not accelerate Alzheimer pathology in AβPP and AβPP/tau transgenic mice. Neuropathology 32:390–397

    Article  PubMed  Google Scholar 

  • Ambrose TM, Al-Lozi M, Scott MG (2000) Bone lead concentrations assessed by in vivo X-ray fluorescence. Clin Chem 46(8):1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Apostoli P, Catalani S (2010) Metal ions affecting reproduction and development. Met Ions Toxicol Eff Interact Interdepend Met Ions Life Sci 8:263–303

    Google Scholar 

  • Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Dorman DC (2006) Manganese : pharmacokinetics and molecular mechanisms of brain uptake. Toxicol Rev 25(3):147–154. https://doi.org/10.2165/00139709-200625030-00002

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese : recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221(2):131–147. https://doi.org/10.1016/j.taap.2007.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschner M, Shanker G, Erikson K, Yang J, Mutkus LA (2002) The uptake of manganese in brain endothelial cultures. Neurotoxicology 23(2):165–168. https://doi.org/10.1016/s0161-813x(02)00056-6

    Article  CAS  PubMed  Google Scholar 

  • Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet world 9:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ATSDR, U.S., 2007. Toxicological profile for lead. US Dep. Heal. Hum. Serv. 1, 582

    Google Scholar 

  • Benammi H, El Hiba O, Romane A, Gamrani H (2014) A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin. Acta Histochem 116:920–925

    Article  CAS  PubMed  Google Scholar 

  • Benedetto A, Au C, Aschner M (2009) Manganese-induced dopaminergic neurodegeneration : insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 109(10):4862–4884. https://doi.org/10.1021/cr800536y

    Article  CAS  PubMed  Google Scholar 

  • Bonde JP, Joffe M, Apostoli P, Dale A, Kiss P, Spano M, Caruso F, Giwercman A, Bisanti L, Porru S (2002) Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels. Occup Environ Med 59:234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard MF, Bellinger DC, Weuve J, Matthews-Bellinger J, Gilman SE, Wright RO, Schwartz J, Weisskopf MG (2009) Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults. Arch Gen Psychiatry 66:1313–1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury MW, Deane R (1993) Permeability of the blood-brain barrier to lead. Neurotoxicology 14:131–136

    CAS  PubMed  Google Scholar 

  • Breitenbach M, Ralser M, Perrone GG, Iglseder B, Rinnerthaler M, Dawes IW (2013) Oxidative stress and neurodegeneration: the yeast model system. Front Biosci (Landmark Ed) 18:1174–1193

    Article  CAS  PubMed  Google Scholar 

  • Bressler J, Kim K, Chakraborti T, Goldstein G (1999) Molecular mechanisms of lead neurotoxicity. Neurochem Res 24:595–600

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Spahr L, Fontaine S, Layrargues GP (1995) Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metab Brain Dis 10(4):259–267. https://doi.org/10.1007/BF02109357

    Article  CAS  PubMed  Google Scholar 

  • Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism : similarities and differences. Neurology 44(9):1583–1586. https://doi.org/10.1212/wnl.44.9.1583

    Article  CAS  PubMed  Google Scholar 

  • Chen H-H, Ma T, Ho K (2001) Effects of developmental lead exposure on inhibitory avoidance learning and glutamate receptors in rats. Environ Toxicol Pharmacol 9:185–191

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134(4):601–610. https://doi.org/10.1111/jnc.13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JA, Trojano M, Mowry EM, Uitdehaag BMJ, Reingold SC, Marrie RA (2020) Leveraging real-world data to investigate multiple sclerosis disease behavior, prognosis, and treatment. Mult Scler J 26:23–37

    Article  Google Scholar 

  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473

    Article  CAS  PubMed  Google Scholar 

  • Cory-Slechta DA, O’Mara DJ, Brockel BJ (1998) Nucleus accumbens dopaminergic medication of fixed interval schedule-controlled behavior and its modulation by low-level lead exposure. J Pharmacol Exp Ther 286:794–805

    CAS  PubMed  Google Scholar 

  • Devi CB, Reddy GH, Prasanthi RPJ, Chetty CS, Reddy GR (2005) Developmental lead exposure alters mitochondrial monoamine oxidase and synaptosomal catecholamine levels in rat brain. Int J Dev Neurosci 23:375–381

    Article  CAS  PubMed  Google Scholar 

  • Devoto P, Flore G, Ibba A, Fratta W, Pani L (2001) Lead intoxication during intrauterine life and lactation but not during adulthood reduces nucleus accumbens dopamine release as studied by brain microdialysis. Toxicol Lett 121:199–206

    Article  CAS  PubMed  Google Scholar 

  • El Fari R, Abbaoui A, Bourziq A, Zroudi M, Draoui A, El Khiat A, Belkouch M, Elgot A, Gamrani H (2019) Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 102:101686. https://doi.org/10.1016/j.jchemneu.2019.101686

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43(4-5):475–480. https://doi.org/10.1016/s0197-0186(03)00037-8

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19(3):415–421. https://doi.org/10.1016/j.etap.2004.12.053

    Article  CAS  PubMed  Google Scholar 

  • Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipov NM, Dodd CA (2012) Role of glial cells in manganese neurotoxicity. J Appl Toxicol 32(5):310–317. https://doi.org/10.1002/jat.1762

    Article  CAS  PubMed  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flora SJS, Flora G, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning, in: Lead. Elsevier, pp. 158–228

    Google Scholar 

  • Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S (2018) Alpha-synuclein, proteotoxicity and Parkinson’s disease: search for neuroprotective therapy. Curr Neuropharmacol 16:1086–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-Lombó C, Posadas Y, Quintanar L, & Gonsebatt ME (2018) Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure : redox signaling and oxidative stress—PubMed. https://pubmed.ncbi.nlm.nih.gov/29402131/

  • Gazzaniga MS, Ivry RB, Mangun GR (2000) Neurosciences cognitives: la biologie de l’esprit. De Boeck Supérieur

    Google Scholar 

  • Goyer RA (1993) Lead toxicity: current concerns. Environ Health Perspect 100:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JD, O’Flaherty EJ (1994) Effects of lead exposure on skeletal development in rats. Fundam Appl Toxicol 22:594–604

    Article  CAS  PubMed  Google Scholar 

  • Han SG, Kim Y, Kashon ML, Pack DL, Castranova V, Vallyathan V (2005) Correlates of oxidative stress and free-radical activity in serum from asymptomatic shipyard welders. Am J Respir Crit Care Med 172:1541–1548

    Article  PubMed  Google Scholar 

  • Higginson J, DeVita VT Jr (1980) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Am Ind Hyg Assoc J 41:A26–A28

    CAS  PubMed  Google Scholar 

  • Holtzman D, Olson JE, DeVries C, Bensch K (1987) Lead toxicity in primary cultured cerebral astrocytes and cerebellar granular neurons. Toxicol Appl Pharmacol 89:211–225

    Article  CAS  PubMed  Google Scholar 

  • Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M (2015) Manganese is essential for neuronal health. Annu Rev Nutr 35:71–108. https://doi.org/10.1146/annurev-nutr-071714-034419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu P-C, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hunter-Schaedle KE (1997) Radial glial cell development and transformation are disturbed in reeler forebrain. J Neurobiol 33:459–472

    Article  CAS  PubMed  Google Scholar 

  • Hydes DJ (1977) Reaction of aluminum at clay surfaces, in: Transactions-American Geophysical Union. Amer Geophysical Union 2000 Florida Ave NW, WASHINGTON, DC 20009, p. 1165

    Google Scholar 

  • Jett DA, Kuhlmann AC, Guilarte TR (1997) Intrahippocampal administration of lead (Pb) impairs performance of rats in the Morris water maze. Pharmacol Biochem Behav 57:263–269

    Article  CAS  PubMed  Google Scholar 

  • Kabata H, Matsuda A, Yokoi K, Kimura M, & Itokawa Y (1989) [The effect of the dosage and route of manganese administration on manganese concentration in rat brain] Nihon Eiseigaku Zasshi. Japanese J Hyg, 44(2), 667–672. https://doi.org/10.1265/jjh.44.667

  • Kaneko T, Mizuno N (1994) Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 61:839–849

    Article  CAS  PubMed  Google Scholar 

  • Kapusta P, Sobczyk Ł (2015) Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci Total Environ 536:517–526

    Article  CAS  PubMed  Google Scholar 

  • Keitel WA, Campbell JD, Treanor JJ, Walter EB, Patel SM, He F, Noah DL, Hill H (2008) Safety and immunogenicity of an inactivated influenza A/H5N1 vaccine given with or without aluminum hydroxide to healthy adults: results of a phase I–II randomized clinical trial. J Infect Dis 198:1309–1316

    Article  PubMed  Google Scholar 

  • Kelada SN, Shelton E, Kaufmann RB, Khoury MJ (2001) δ-Aminolevulinic acid dehydratase genotype and lead toxicity: a HuGE review. Am J Epidemiol 154:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14(1):99. https://doi.org/10.1186/s12974-017-0871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwakye GF, Paoliello MMB, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced Parkinsonism and Parkinson’s disease : shared and distinguishable features. Int J Environ Res Public Health 12(7):7519–7540. https://doi.org/10.3390/ijerph120707519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon JT, Seo GB, Jo E, Kim HM, Shim I, Lee BW, Yoon BI, Kim P, Choi K (2013) Aluminum nanoparticles induce ERK and p38MAPK activation in rat brain. Toxicol Res 29:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalor GC, Vutchkov MK, Bryan ST, Christie CDC, Donaldson D, Young J, Chambers S (2006) Acute lead poisoning associated with backyard lead smelting in Jamaica. West Indian Med J 55:394–398

    Article  CAS  PubMed  Google Scholar 

  • Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL, Succop P, Mahaffey KR, Dixon S, Galke W (1998) The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels: a pooled analysis of 12 epidemiologic studies. Environ Res 79:51–68

    Article  CAS  PubMed  Google Scholar 

  • Lao Y, Dion L-A, Gilbert G, Bouchard MF, Rocha G, Wang Y, Leporé N, Saint-Amour D (2017) Mapping the basal ganglia alterations in children chronically exposed to manganese. Sci Rep 7:41804. https://doi.org/10.1038/srep41804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasley SM, Green MC, Gilbert ME (1999) Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead. Neurotoxicology 20:619–629

    CAS  PubMed  Google Scholar 

  • Leret ML, Garcia-Uceda F, Antonio MT (2002) Effects of maternal lead administration on monoaminergic, GABAergic and glutamatergic systems. Brain Res Bull 58:469–473

    Article  CAS  PubMed  Google Scholar 

  • Lin J-L, Tan D-T, Hsu K-H, Yu C-C (2001) Environmental lead exposure and progressive renal insufficiency. Arch Intern Med 161:264–271

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud AA, Abdelrahman A, el Aziz HOA (2018) Protective effect of curcumin on the liver of high fat diet-fed rats. Gene Rep 11:18–22

    Article  Google Scholar 

  • Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75. https://doi.org/10.1016/j.freeradbiomed.2013.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzolini M, Traverso S, Marchetti C (2001) Multiple pathways of Pb2+ permeation in rat cerebellar granule neurones. J Neurochem 79:407–416

    Article  CAS  PubMed  Google Scholar 

  • McLachlan DR, Kruck TP, Lukiw WJ, Krishnan SS (1991) Would decreased aluminum ingestion reduce the incidence of Alzheimer’s disease? C Can Med Assoc J 145:793

    CAS  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    Article  CAS  PubMed  Google Scholar 

  • Milatovic D, Gupta RC, Yu Y, Zaja-Milatovic S, Aschner M (2011) Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 256(3):219–226. https://doi.org/10.1016/j.taap.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neag A, Favier V, Bigot R, Pop M (2012) Microstructure and flow behaviour during backward extrusion of semi-solid 7075 aluminium alloy. J Mater Process Technol 212:1472–1480

    Article  CAS  Google Scholar 

  • Odigie IP, Ladipo CO, Ettarh RR, Izegbu MC (2004) Effect of chronic exposure to low levels of lead on renal function and renal ultrastructure in SD rats. Niger J Physiol Sci 19:27–32

    CAS  Google Scholar 

  • Otto D, Murata K (1993) Summary of workshop III: evoked potentials. Environ Res 60:79–81

    Article  Google Scholar 

  • Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity : a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57. https://doi.org/10.1186/s40360-016-0099-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier J, Semple H, Davies J, Lapointe R, Dziwenka M, Hiltz M, Mujibi D (2011) Double-blind, vehicle-controlled randomized twelve-month neurodevelopmental toxicity study of common aluminum salts in the rat. Neuroscience 193:338–362

    Article  CAS  PubMed  Google Scholar 

  • Pounds JG, Long GJ, Rosen JF (1991) Cellular and molecular toxicity of lead in bone. Environ Health Perspect 91:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praticò D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16(9):1138–1140

    Article  PubMed  Google Scholar 

  • Renner R (2010) Exposure on tap: drinking water as an overlooked source of lead.

    Google Scholar 

  • Ribes D, Colomina MT, Vicens P, Domingo JL (2008) Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer’s disease. Exp Neurol 214:293–300

    Article  CAS  PubMed  Google Scholar 

  • Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues J-F (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496

    Article  PubMed  Google Scholar 

  • Roos PM, Vesterberg O, Nordberg M (2006) Metals in motor neuron diseases. Exp Biol Med 231:1481–1487

    Article  CAS  Google Scholar 

  • Sabbar M (2013) Conséquences de la toxicité du plomb sur l’activité des ganglions de la base et les rythmes circadiens chez le rat: Approches électrophysiologique, neurochimique et anatomo-fonctionnelle

    Google Scholar 

  • Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24:15–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson CL, McLachlan DRC, De Boni U (1982) Altered steroid induced puffing by chromatin bound aluminum in a polytene chromosome of the blackfly Simulium Vittatum. Can J Genet Cytol 24:27–36

    Article  CAS  Google Scholar 

  • Sansar W, Ahboucha S, Gamrani H (2011) Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat. Acta Histochem 113:601–607

    Article  CAS  PubMed  Google Scholar 

  • Scheel-Krüger J, Magelund G, Olianas MC (1981) Role of GABA in the striatal output system: globus pallidus, nucleus entopeduncularis, substantia nigra and nucleus subthalamicus. Adv Biochem Psychopharmacol 30:165

    PubMed  Google Scholar 

  • Shi L-Y, Zhang L, Li H, Liu T-L, Lai J-C, Wu Z-B, Qin J (2018) Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep 70:1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Styren SD, Kamboh MI, Dekosky ST (1998) Expression of differential immune factors in temporal cortex and cerebellum: the role of α-1-antichymotrypsin, apolipoprotein E, and reactive glia in the progression of Alzheimer’s disease. J Comp Neurol 396(4):511–520

    Article  CAS  PubMed  Google Scholar 

  • Szymanski M (2014) Molecular mechanisms of lead toxicity. Biotechnol J Biotechnol Comput Biol Bionanotechnol:95

    Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41(1):79–87. https://doi.org/10.1016/s0165-0173(02)00234-5

    Article  CAS  PubMed  Google Scholar 

  • Tamegart L, Abbaoui A, Bouyatas MM, Gamrani H (2021) Lead (Pb) exposure induces physiological alterations in the serotoninergic and vasopressin systems causing anxiogenic-like behavior in Meriones shawi: assessment of BDMC as a neuroprotective compound for Pb-neurotoxicity and kidney damages. J Trace Elem Med Biol 65:126722

    Article  CAS  PubMed  Google Scholar 

  • Tamegart L, Abbaoui A, El Khiat A, Bouyatas MM, Gamrani H (2019a) Altered nigrostriatal dopaminergic and noradrenergic system prompted by systemic lead toxicity versus a treatment by curcumin-III in the desert rodent Meriones shawi. C R Biol 342:192–198

    Article  PubMed  Google Scholar 

  • Tamegart L, Abbaoui A, Makbal R, Zroudi M, Bouizgarne B, Bouyatas MM, Gamrani H (2019b) Crocus sativus restores dopaminergic and noradrenergic damages induced by lead in Meriones shawi: a possible link with Parkinson’s disease. Acta Histochem 121:171–181

    Article  CAS  PubMed  Google Scholar 

  • Tiffany-Castiglioni E (1993) Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology 14:513–536

    CAS  PubMed  Google Scholar 

  • Tjalkens RB, Liu X, Mohl B, Wright T, Moreno JA, Carbone DL, Safe S (2008) The peroxisome proliferator-activated receptor-gamma agonist 1,1-bis(3′-indolyl)-1-(p-trifluoromethylphenyl)methane suppresses manganese-induced production of nitric oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. J Neurosci Res 86(3):618–629. https://doi.org/10.1002/jnr.21524

    Article  CAS  PubMed  Google Scholar 

  • Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 18:159–181. https://doi.org/10.1007/978-3-319-60189-2_8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tortora GJ, Grabowski SR (2001) Principes d’anatomie et de physiologie. De Boeck Supérieur

    Google Scholar 

  • Tuschl K, Mills PB, Clayton PT (2013) Manganese and the brain. Int Rev Neurobiol 110:277–312. https://doi.org/10.1016/B978-0-12-410502-7.00013-2

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802

    Article  CAS  PubMed  Google Scholar 

  • Vij AG, Dhundasi SA (2009) Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J Med Sci 2:27–36

    CAS  Google Scholar 

  • Wahlberg K, Arora M, Curtin A, Curtin P, Wright RO, Smith DR, Lucchini RG, Broberg K, Austin C (2018) Polymorphisms in manganese transporters show developmental stage and sex specific associations with manganese concentrations in primary teeth. Neurotoxicology 64:103–109. https://doi.org/10.1016/j.neuro.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR, Garey JD, Zaccaria K, & Citra M (2012) Toxicological profile for manganese. Agency for Toxic Substances and Disease Registry (US). http://www.ncbi.nlm.nih.gov/books/NBK158872/

  • Willis AW, Evanoff BA, Lian M, Galarza A, Wegrzyn A, Schootman M, Racette BA (2010) Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am J Epidemiol 172:1357–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584

    Article  CAS  PubMed  Google Scholar 

  • Yumoto S, Kakimi S, Ohsaki A, Ishikawa A (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Zatta P, Lucchini R, van Rensburg SJ, Taylor A (2003) The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull 62:15–28

    Article  CAS  PubMed  Google Scholar 

  • Zerrouki K (2017) L’effet antioxydant de quelques plantes médicinales sur la neurotoxicité et les maladies neurodégénérative dues aux métaux lourds (Etude expérimentale chez la souris)

    Google Scholar 

  • Zuch CL, O’Mara DJ, Cory-Slechta DA (1998) Low-level lead exposure selectively enhances dopamine overflow in nucleus accumbens: AnIn VivoElectrochemistry time course assessment. Toxicol Appl Pharmacol 150:174–185

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Leibfritz D, Hazell AS (2003) Energy metabolism in astrocytes and neurons treated with manganese : relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 23(6):756–771. https://doi.org/10.1097/01.WCB.0000056062.25434.4D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lahcen Tamegart or Halima Gamrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamegart, L., Oukhrib, M., El Ghachi, H., Maloui, A.B., El khiat, A., Gamrani, H. (2023). Trace Elements and Neurodegenerative Diseases. In: Mohamed, W., Sandhir, R. (eds) Trace Elements in Brain Health and Diseases. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-1513-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1513-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1512-5

  • Online ISBN: 978-981-99-1513-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics