Skip to main content
Log in

Effects of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study was performed to investigate the effects of three Zn levels, including Zn adequate (35.94 mg/kg, as a control), Zn deficiency (3.15 mg/kg), and Zn overload (347.50 mg/kg) in growing male rats for 6 wk. This allowed for evaluation of the effects that these Zn levels might have on body weight, organ weight, enzymes activities, and tissues concentrations of Zn and Cu. The results showed that Zn deficiency has negative effects on growth, organ weight, and biological parameters such as alkaline phosphatase (ALP) and Cu−Zn superoxide dismutase (Cu−Zn SOD) activities, whereas Zn overload played an effective role in promoting growth, improving the developments of organs and enhancing immune system. Hepatic metallothionein (MT) concentration showed an identical increase tendency in rats fed both Zn-deficient and Zn-overload diets. The actual mechanism of reduction of Cu concentration of jejunum in rats fed a Zn-overload diet might involve the modulation or inhibition of a Cu transporter protein by Zn and not by the induction of MT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  2. S. Chan, B. Gerson, and S. Subramaniam, The role of copper, molybdenum, selenium, and zinc in nutrition and health, Clin. Lab. Med. 18, 673–685 (1998).

    PubMed  CAS  Google Scholar 

  3. H. A. El Hendy, M. I. Yousef, and N. I. Abo El-Naga, Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats, Toxicology 167, 163–170 (2001).

    Article  PubMed  Google Scholar 

  4. M. I. Yousef, H. A. El Hendy, F. M. El-Demerdash, et al., Dietary zinc deficiency-induced changes in the activity of enzymes and levels of free radicals, lipids and protein electrophoretic behavior in growing rats, Toxicology 175, 223–234 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. I. Bremner, Nutritional and physiological significance of metallothionein, Experientia 52(Suppl.), 81–107 (1987).

    CAS  Google Scholar 

  6. W. P. Michael, B. Gerstmayer, A. Bosio, et al., Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: monitoring gene expression using cDNA micoroarrays combined with real-time RT-PCR, J. Nutr. Biochem. 14, 691–702 (2003).

    Article  CAS  Google Scholar 

  7. N. F. Shay and H. F. Manigan, Neurobiology of zinc-influenced eating behavior, J. Nutr. 130, 1493S-1499S (2000).

    PubMed  CAS  Google Scholar 

  8. D. Carlson, H. D. Poulsen, and J. Sehested, Influence of weaning and effect of post weaning dietary zinc and copper on electrophysiological response to glucose, theophylline and 5-HT in pignet small intestinal mucosa, Comp. Biochem. Physiol. A. 137(4), 757–765 (2004).

    Article  CAS  Google Scholar 

  9. J. W. Smith, M. D. Tokach, R. D. Goodmand, et al., Effects of the interrelationship between zinc and copper sulfate on growth performance of early-weaned pigs, J. Anim. Sci. 75, 1861–6 (1997).

    PubMed  CAS  Google Scholar 

  10. J. Szabó, M. Hegedus, G. Bruckner, et al. Large doses of zinc increases the activity of hydrolases in rats. J. Nutr. Biochem. 15, 206–209 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. A. E. Favier, The role of zinc in reproduction: hormonal mechanisms, Biol. Trace Element Res. 32, 363–382 (1992).

    CAS  Google Scholar 

  12. J. C. Welkell, K. D. Shearer, and E. J. Gauglitz III, Zinc supplementation of trout diets: tissue indicators of body zinc status, Prog. Fish-Cult. 48, 205–212 (1986).

    Article  Google Scholar 

  13. S. I. Kettler, K. Eder, A. Kettler, et al., Zinc deficiently and the activities of lipoprotein lipase in plasma and tissues of rats force-fed diets with coconut oil or fish oil, J. Nutr. Biochem. 11, 132–138 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. H. T. Dieck, F. Doring, H. P. Roth, et al., Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays, J. Nutr. 133, 1004–1010 (2003).

    Google Scholar 

  15. N. W. Tietz, A. D. Rinker and L. M. Shaw, IFCC methods for the measurement of catalytic concentrations of enzymes. Part 5: IFCC methods for alkaline phosphatase. J. Clin. Chem. Clin. Biochem. 21, 731–748 (1983).

    PubMed  CAS  Google Scholar 

  16. F. Mahmoodian, A. Gosiewska, and B. Peterkofsky, Regulation and properties of bone alkaline phosphatase during vitamin C deficiency in guinea pigs, Arch. Biochem. Biophys. 336(1), 86–96 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Sun, L. W. Oberley, and Y. Li, A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34, 497–500 (1988).

    PubMed  CAS  Google Scholar 

  18. D. L. Eaton and B. F. Toal, Evaluation of the Cd/hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues Toxicol. Appl. Pharmacol. 66, 134–142 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. M. S. Clegg, C. L. Keen, and B. Lonnerdal, Influence of ashing techniques on the analysis of trace elements in animal tissues, Biol. Trace Element Res. 3, 107–115 (1981).

    Article  CAS  Google Scholar 

  20. R. G. D. Steel and J. H. Torrie, Principle and procedure of statistics, in A Biochemical Approach, 2nd ed., McGraw-Hill, New York (1980).

    Google Scholar 

  21. A. S. Prasad, Biochemistry of Zinc, Plenum, New York (1993).

    Google Scholar 

  22. H. Ai, J. Chen, and S. He, The effects of zinc deficiency and testosterone supplement on testosterone synthesis and skeletal muscle of rats. Wei Sheng Yen Chiu 26, 211–215 (1997).

    PubMed  CAS  Google Scholar 

  23. A. Kraus, H. Roth, and M. Kirchgessner, Supplementation with vitamin C, vitamin E or β-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats, J. Nutr. 127, 1290–1296 (1997).

    PubMed  CAS  Google Scholar 

  24. R. S. MacDonald, L. C. Wollard-Biddle, J. D. Browning, et al., Zinc deprivation of murine 3T3 cells by use of diethylenetrinitrilopentaacetate impairs DNA synthesis upon stimulation with insulin-like growth factor-I (IGF-I), J. Nutr. 128, 1600–1605 (1998).

    PubMed  CAS  Google Scholar 

  25. G. Levin, U. Cogan, and S. Mokady, Food restriction and membrane fluidity, Mech. Aging Dev. 62, 137–141 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. W. B. Essman, Perspective for nutrients and brain function, in Nutrients and Brain Function, A. G. Karger, Switzerland, pp. 1–10 (1987).

    Google Scholar 

  27. G. B. Martin and C. L. White, Effects of dietary zinc deficiency on gonadotrophin secretion and testicular growth in young male sheep. J. Reprod. Fertil 96, 497–507 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. L. Stallard and P. G. Reeves, Zinc deficiency in adult rats reduces the relative abundance of testis-specific angiotensin-converting enzyme mRNA, J. Nutr. 127, 25–29 (1997).

    PubMed  CAS  Google Scholar 

  29. E. J. Underwood, The mineral nutrition of livestock, Oxford University Press, UK. (1981).

    Google Scholar 

  30. T. Ogiso, K. Mariyama, and S. Sasaki, Inhibitory effect of high zinc on copper absorption in rats, Chem. Pharm. Bull. 22, 55–60 (1974).

    PubMed  CAS  Google Scholar 

  31. T. Ogiso, N. Ogawa, and T. Miura, Inhibitory effect of dietary zinc on copper absorption in rats, II. Binding of copper and zinc to cytosol proteins in the intestinal mucosa, Chem. Pharm. Bull. 27, 515–521 (1979).

    PubMed  CAS  Google Scholar 

  32. P. W. F. Fischer, A. Giroux, and M. R. L. Abbe, Effects of zinc on mucosal copper binding and on the kinetics of copper absorption, J. Nutr. 113, 462–469 (1983).

    PubMed  CAS  Google Scholar 

  33. P. G. Reeves, Copper metabolism in metallothionein-null mice fed a high-zinc diet, J. Nutr. Biochem. 9, 598–601 (1998).

    Article  CAS  Google Scholar 

  34. P. G. Reeves, Adaptation responses in rats to long-term feeding of high-zinc diets: emphasis on intestinal metallothionein, J. Nutr. Biochem. 6, 48–54 (1995).

    Article  CAS  Google Scholar 

  35. P. G. Reeves, Copper status of adult male rats is not affected by feeding an AIN-93G-based diet containing high concentrations of zinc, J. Nutr. Biochem. 7, 166–172 (1996).

    Article  CAS  Google Scholar 

  36. I. Bremner and N. T. Davies, The induction of metallothionein in rat liver by zinc injection and restriction of food intake, Biochem. J. 149, 733–738 (1975).

    PubMed  CAS  Google Scholar 

  37. M. P. Richards, and R. J. Cousins, Metallothionein and its relationship to the metabolism of dietary zinc in rats, J. Nutr. 106, 1591–1599 (1976).

    PubMed  CAS  Google Scholar 

  38. I. E. Dreosti, Zinc and the gene, Mutat. Res. 475, 161–167 (2001).

    PubMed  CAS  Google Scholar 

  39. I. Bremner, W. G. Hoekstra, N. T. Davies, et al., Effect of zinc status of rats on the synthesis and degradation of copper-induced metallothioneins, Biochem. J. 174, 883–892 (1978).

    PubMed  CAS  Google Scholar 

  40. B. Sas and I. Bremner, Effect of acute stress on the absorption and distribution of zinc and on Zn-metallothionein production in the liver of the chick, J. Inorg. Biochem. 11, 67–76 (1979).

    Article  PubMed  CAS  Google Scholar 

  41. A. I. Alayash, Zinc and some zinc dependent enzymes in sickle cell anemia, Int. J. Vitam. Nutr. Res. 59(4), 388–389 (1989).

    PubMed  CAS  Google Scholar 

  42. R. Lakshmi, R. Kundu, E. Thomas, et al., Mercuric chloride induced inhibition of acid and alkaline phosphatase activity in the kidney of mudskipper; Boleophthalmus dentatus, Acta Hydrochim. Hydrobiol. 3, 341–344 (1991).

    Article  Google Scholar 

  43. J. E. Coleman, Structure and metabolism of alkaline phosphatase, Annu. Rev. Biomol. Struct. 21, 441–483 (1992).

    Article  CAS  Google Scholar 

  44. F. Anna, E. R. Miller, and P. K. Ku, Effect of elevated dietary zinc on growth performance of weaning swine, Michigan State Univ. Rep. Swine Res. 520, 128–132 (1992).

    Google Scholar 

  45. G. M. Hill and E. R. Miller, Effect of dietary zinc livels on the growth and development of the gilt, J. Anim. Sci. 57, 106–113 (1983).

    PubMed  CAS  Google Scholar 

  46. Z. R. Xu and M. Q. Wang, Approach of the mechanism of growth promoting effect of pharmacological level of zinc in pigs. Acta, Vet. Zootech. Sin. 32(1), 11–17 (2001).

    Google Scholar 

  47. J. K. Chesters, Biochemistry of zinc in cell division and tissue growth, in Zinc in Human Biology, C. F. Mills, eds., Springer-Verlag, London, pp. 109–118 (1989).

    Google Scholar 

  48. A. S. Prasad, F. W. Beck, L. Endre, et al., Zinc deficiency affects cell cycle and deoxythymidine kinase gene expression in HUT 78 cells, J. Lab. Clin. Med. 128, 51–60 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J.Y., Jing, M.Y., Weng, X.Y. et al. Effects of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats. Biol Trace Elem Res 107, 153–165 (2005). https://doi.org/10.1385/BTER:107:2:153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:2:153

Index Entries

Navigation