Skip to main content
Log in

Effects of dexamethasone on trace elements and serum protein patterns following brain trauma in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of dexamethasone (Dxm) on trace elements and serum protein patterns was investigated in male Sprague-Dawley rats subjected to brain trauma. After 6-or 24 h of the traumatic incident, the level of serum copper was significantly higher in the Dxm-treated rats, compared to controls (p<0.05). The corresponding levels of zinc and iron did not show significant differences. The zinc level returned to normal 24 h after trauma. After 6 and 24 h of trauma, the sodium dodecyl sulfate (SDS)-polyacrylamide gel patterns of serum proteins showed that a 41.6-kDa protein was significantly increased in the Dxm-treated animals. Two proteins weighing 26.6 kDa and 55.1 kDa did not show Dxm-induced changes. These results suggest that increases in the copper-zinc ratio and the changes of the 26.6-kDa, 41.6-kDa, and 55.1-kDa proteins might be a useful prognostic indicator for severe traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Larner, R. L. Hayes, D. M. Mckinsy, B. R. Pike, and K. K. Wang, Increased expression and processing of caspase-12 after traumatic brain injury in rats, J. Neurochem. 88, 78–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. F. P. Zemlan, W. S. Rosenberg, P. A. Luebbe, et al., Quantification of axonal damage in traumatic brain injury; affinity purification and characterization of cerebrospinal fluid tau proteins, J. Neurochem. 72, 741–750 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. R. Vink, C. A. O'Connor, A. J. Nimmo, and D. L. Heath, Magnesium attenuates persistent functional deficits following diffuse trauatic brain injury in rats. Neurosci. Lett. 336, 41–44 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. R. L. Bang, A. L. Al-Bader, P. N. Sharma, A. B. Mattapallil, A. I. Behbehani, and H. Dahti, Trace elements content in serum, normal skin, and scar tissues of keloid and normal scar patients. J. Trace Elements Exp. Med. 15, 57–66 (2002).

    Article  CAS  Google Scholar 

  5. H. Joung, R. A. DiSilvestro, J. C. Burge, P. S. Choban, and L. Flancbaum, Zinc and Copper-related blood parameters in mele trauma patients, Nutr. Res. 18, 693–701 (1998).

    Article  CAS  Google Scholar 

  6. E. C. Yeiser, W. J. Vanlandingham, and C. W. Levenson, Moderate zinc deficiency increases cell death after brain injury in the rat, Nutr. Neurosci. 5, 345–352 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. D. T. Hiyama, D. Allmen, L. Rosenblum, C. K. Ogle, P. O. Hasselgren, and J. E. Fisher, Synthesis of albumin and acute-phase proteins in perfused liver after burn injury in rats, J. Burn Care Rehabil. 12, 1–6 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. M. Kudlackova, M. Andel, H. Hajkova, and J. Novakova, Acute phase proteins and prognostic inflammatory and nutritional index (PINI) in moderately burned children aged up to 3 years, Burns 16, 53–56 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. A. Tajima, M. H. Yen, H. Nakata, et al., Effects of dexamethasone on blood flow and volume of perfused microvessels in traumatic brain edema, Adv. Neurol. 52, 343–350 (1990).

    PubMed  CAS  Google Scholar 

  10. A. Marmarou, M. A. Foda, and W. Van Den Brink, A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics, J. Neurosurg. 80, 291–300 (1994).

    PubMed  CAS  Google Scholar 

  11. M. A. Foda and A. Marmarous, A new model of diffuse brain injury in rats. Part II: morphological characterization, J. Neurosurg. 80, 301–313 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  13. T. Hortobagyi, S. Hortobagyi, C. Görlach, et al., A novel brain trauma model in the mouse: effects of dexamethasone treatment, Pflügers Arch: Eur. J. Physiol. 441, 409–415 (2000).

    Article  CAS  Google Scholar 

  14. J. H. Weiss, S. L. Sensi, and J. Y. Koh, Zn2+ a novel ionic mediator of neural Injury in brain disease, Trends Pharmacol. Sci. 21, 395–401 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. M. M. Berger, F. Spertini, A. Shenkin, et al., Trace element supplementation modulates pulmonary infection rates after major burns: a double-blind, placebo-controlled trial, Am. J. Clin. Nutr. 68, 365–371 (1998).

    PubMed  CAS  Google Scholar 

  16. N. C. Rosander, U. Lindh, N. G. Ilback, et al., Interactions between Chlamydia pneumonia and trace elements, Biol. Trace Element Res. 91, 97–110 (2003).

    Article  Google Scholar 

  17. M. Rakaric-Poznanovic, I. Snur, V. Snur, V. Ranic, and T. Sabljic, The role of proteins and amino acids in acute phase response. Lijec. Vjesn. 117, 107–109 (1995).

    PubMed  Google Scholar 

  18. H. Antila, M. Salo, V. Nanto, K. Irjala, R. Brenner, and M. Vapaavuori, Serum iron, zinc, copper, selenium, and bromide concentrations after coronary bypass operation, J. Parenter. Enternal Nutr. 14, 85–89 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekin, S., Berber, I. & Kiymaz, N. Effects of dexamethasone on trace elements and serum protein patterns following brain trauma in rats. Biol Trace Elem Res 107, 53–60 (2005). https://doi.org/10.1385/BTER:107:1:053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:1:053

Index Entries

Navigation