Skip to main content
Log in

Beneficial effects of selenium on some enzymes of diabetic rat heart

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It is known that selenium compounds can restore some metabolic parameters in experimental diabetes. However, as there are no, clear data about their effects on the altered antioxidant defense system of the diabetic heart, we aimed to investigate whether these beneficial effects extend to the alterations of some enzyme activities, which play important roles in antioxidant defense system. Diabetes was induced by streptozotocin (50 mg/kg body weight) and rats were then treated with sodium selenite (5 μmol/kg/d) for 4 wk. Sodium selenite treatment of the diabetic rats significantly restored the altered activities of glutathione- S-transferase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase, which are involved in the glutathione metabolism of the heart, but slightly but significantly decreased the high blood glucose level. In summary, the present study suggests that the beneficial effects of sodium selenite treatment appears to be the result of the restoration altered activities of the antioxidant enzymes in diabetic heart tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Fein, L. B. Kornstein, J. E. Strobeck, J. M. Capasso, and E. H. Sonnenblick, Altered myocardial mechanics in diabetic rats, Circ. Res. 47, 922–933 (1980).

    PubMed  CAS  Google Scholar 

  2. T. J. Regan, M. M. Lyons, S. S. Ahmed, et al., Evidence for cardiomyopathy in familial diabetes mellitus, J. Clin. Invest. 60, 885–899 (1977).

    Google Scholar 

  3. Y. Shechter, Insulin-mimetic effects on vanadate. Possible implications for future treatment of diabetes, Diabetes 1, 1–5 (1990).

    Article  Google Scholar 

  4. J. H. McNeill, H. L. M. Delgatty, and M. L. Battell, Insulinlike effects of sodium selenate in streptozotocin-induced diabetic rats. Diabetes 40, 1675–1678 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. R. Ghosh, B. Mukherjee, and M. Chatterjee, A novel effect of selenium on streptozotocin-induced diabetic mice, Diabetes Res. 25, 165–171 (1994).

    Google Scholar 

  6. E. A. Berg, J. Y. Wu, L. Campbell, M. Kagey, and S. R. Stapleton, Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats, Biochimie 77, 919–924 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. D. J. Becker, B. Reul, A. T. Ozcelikay, J. P. Buchet, J. C. Henquin, and S. M. Brichard, Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycogenic and gluconeogenic enzymes in diabetic rats, Diabetologia 39, 3–11 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. S. R. Stapleton, G. Garlock, L. Foellmi-Adam, and R. F. Kletzien, Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase, Biochem. Biophys. Acta 1355, 259–269 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. B. Mukherjee, S. Anbszhagan, A. Roy, R. Ghosh, and M. Chatterjee, Novel implications of the potential role of selenium on antioxidant status in streptozotocin-induced diabetic mice, Biomed. Pharmacother. 52, 89–95 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. M. L. Battell, H. L. M. Delgatty, and J. H. McNeill, Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats, Mol. Cell. Biochem. 179, 27–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. M. Ayaz, B. Can, S. Ozdemir, and B. Turan, Protective effect of selenium treatment on diabetes-induced myocardial structural alterations, Biol. Trace Element Res. 89, 215–226 (2002).

    Article  CAS  Google Scholar 

  12. G. Ersoz, A. Yakaryilmaz, and B. Turan, Effect of sodium selenite treatment on platelet aggregation of streptozotocin-induced diabetic rats, Thromb. Res. 11, 363–367 (2003).

    Article  CAS  Google Scholar 

  13. M. Ayaz, S. Ozdemir, M. Ugur, G. Vassort, and B. Turan, Effects of selenium on altered mecnanicai and electrical cardiac activities of diabetic rat, Arch. Biochem. Biophys. 426, 83–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. O. Ezaki, The insulin-like effects of selenate in rat adipocytes, J. Biol. Chem. 265, 1124–1130 (1990).

    PubMed  CAS  Google Scholar 

  15. E. Heart and C. K. Sung, Insulin-like and non-insulin-like selenium actions in 3T3-L1 adipocytes, J. Cell. Biochem. 88, 719–731 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafemen, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase, Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. L. D. Koller and J. H. Exon, The two faces of selenium-deficiency and-toxicity are similar in animals and man, Can. J. Vet. Res. 50, 297–306 (1986).

    PubMed  CAS  Google Scholar 

  18. J. Neve, Physiological and nutritional importance of selenium, Experienta 47, 187–193 (1991).

    Article  CAS  Google Scholar 

  19. D. H. Mak, S. P. Ip, P. C. Li, M. K. Poon, and K. M. Ko, Alterations in tissue glutathione system in streptozotocin-induced diabetic rats, Mol. Cell. Biochem. 162(2), 153–158 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. K. Doi, F. Sawada, G. Toda, et al., Alteration of antioxidants during the progression of heart disease in streptozotocin-induced diabetic rats. Free Radical Res. 34(3), 251–261 (2001).

    Article  CAS  Google Scholar 

  21. K. Betke, H. N. Brewer, L. Kirkman, et al., Standardized method for G-6-PD assay of haemolysates, WHO Tech. Rep. Ser. 366, 30–32 (1967).

    Google Scholar 

  22. B. M. F. Pearse and M. A. Rosemeyer, 6-Phosphogluconate dehydrogenase from human erythrocytes, in Methods in Enzymology, Volume XLI, Academic S. R. Colowich and N. O. Kaplan, eds., London, p. 220 (1975).

  23. W. H. Habig and W. B. Jakoby, Glutathione transferase (human placenta), Methods Enzymol. 77, 218–231 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  25. G. J. Rozanski, Z. Xu, S. P. Didion, and W. G. Mayhan, Metabolic basis of decreased transient outwark K+ current in ventricular myocytes from rats with experimental heart failure, Circulation 96, 1–7 (1997).

    Google Scholar 

  26. G. R. Lee, T. C. Bithell, J. Foerster, J. W. Athens, and J. N. Lukens, Glucose-6-phosphate dehydrogenase deficiency and related deficiencies involving the pentose phosphate pathway and glutathione metabolism, in Wintrobe's Clinical Hematology, G. R. Lee, ed., Lea and Febiger, Philadelphia, pp. 1006–1016 (1993).

    Google Scholar 

  27. T. P. Mulder, D. A. Court, and W. H. Peters, Variability of glutathione-S-transferase in human liver and plasma, Clin. Chem. 45, 355–359 (1999).

    PubMed  CAS  Google Scholar 

  28. Z. Xu, K. P. Patel, M. F. Lou, and G. J. Rozanski, Up-regulation of K+ channels in diabetic rat ventricular myocytes by insulin and glutathione, Cardiovasc. Res. 53, 80–88 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. C. Douillet, M. Bost, M. Accominotti, F. Borson-Chazot, and M. Ciavatti, Effect of selenium and vitamin E supplements on tissue lipids, peroxides, and fatty acid distribution in experimental diabetes, Lipids 33(4), 393–399 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. W. E. Connor, Importance of n-3 fatty acids in health and disease, Am. J. Clin. Nutr. 71, 171S-175S (2000).

    PubMed  CAS  Google Scholar 

  31. T. Hunkar, F. Aktan, A. Ceylan, and C. Karasu, Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotozin-diabetic rats, Cell. Biochem. Funct. 20, 297–302 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. C. Furnsinn, R. Englisch, K. Ebner, P. Nowotny, C. Volge, and W. Waldhausl, Insulin-like vs non-insulin like stimulation of glucose metabolism by vanadium, tungsten and selenium compounds in rat muscle, Life Sci. 59, 1989–2000 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. C. Gocmen, A. Secilmis, E. K. Kumcu, et al., Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse, Eur. J. Pharmacol. 398, 93–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. L. H. Foster and S. Sumar, Selenium in health and disease: a review, Crit. Rev. Food Sci. Nutr. 37, 211–228 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. L. Rao, B. Puschner, and T. A. Prolla, Gene expression profiling of low selenium status in the mouse intestine: transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress, J. Nutr. 131(12), 3175–3181 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulusu, N.N., Turan, B. Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 103, 207–215 (2005). https://doi.org/10.1385/BTER:103:3:207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:3:207

Index Entries

Navigation