Skip to main content
Log in

Concentration levels of major and trace elements in rice from sri lanka as determined by the k 0 standardization method

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Instrumental neutron activation (INAA) with k 0 standardization has been used to determine the concentration levels of a variety of major and trace elements (Al, As, Br, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Rb, Sc, Se, and Zn) in rice grains (raw and parboiled) and in rice flour collected from local markets in Sri Lanka. In addition, the energy-dispersive X-ray fluorescence (EDXRF) analysis has been used to determine the three elements Ca, P, and S in powdered samples. To evaluate and assure the accuracy and precision of the k 0 standardization method, the IAEA standard reference material V-8 rye flour was analyzed. The results obtained in the present investigation were compared with the results reported from other countries. All of the elements detected in the rice matrices from Sri Lanka were very low in concentration or within normal limits for food plants. Approximate daily dietary intakes of the individual elements supplied through rice were calculated and compared with the available literature values of daily allowances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. B. Salisbury and C. W. Ross, Plant Physiology, 4th ed., Wadsworth, San Francisco (1992).

    Google Scholar 

  2. M. Geldmacher-von Mallinckrodt and D. Meissner, General aspects of the role of metals in clinical chemistry, in Handbook on Metals in Clinical and Analytical Chemistry, H. G. Seiler, A. Sigel, and H. Sigel, eds., Marcel Dekker, New York, pp. 13–29 (1994).

    Google Scholar 

  3. F. H. Nielsen, Evolutionary events culminating in specific minerals becoming essential for life, Eur. J. Nutr. 39(2), 62–66 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. G. N. Schrauzer, Lithium: occurrence, dietary intakes and nutritional essentiality, J. Am. Coll. Nutr. 21, 14–21 (2002).

    PubMed  CAS  Google Scholar 

  5. P. R. Jennings, W. R. Coffman, and H. E. Kauffman, Rice Improvement, International Rice Research Institute (IRRI), Los Baños, Philippines (1979).

    Google Scholar 

  6. S. M. Al-Jobori, K. M. Shihab, M. Jalil, A. Saad, and A. Mohsin, Multielement determination in rice, wheat, and barley by instrumental neutron activation analysis, Biol. Trace Element Res. 26–27, 637–645 (1990).

    Article  Google Scholar 

  7. E. Cortes Toro, H. A. Das, J. J. Fardy, et al., Toxic heavy metals and other trace elements in foodstuffs from 12 different countries, Biol. Trace Element Res. 43–45, 415–422 (1994).

    Article  Google Scholar 

  8. R. Doll and R. Peto, The causes of cancers: quantitative estimate of avoidable risk of cancer in the United States today, J. Natl. Cancer Inst. 66B, 1193–1308 (1981).

    Google Scholar 

  9. J. Chen, H. D. Foster and L. Zhang, Cancer and soil characteristics in the People's Republic of China, Environ. Geochem. Health 16, 565–588 (1994).

    Google Scholar 

  10. K. S. Kasprzak, W. Bal, and A. A. Karaczyn, The role of chromatin damage in nickel-induced carcinogenesis. A review of recent developments, J. Environ. Monit. 5(2), 183–187 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, CRC, Boca Raton, FL (1984).

    Google Scholar 

  12. Codex Alimentarius Commission. Contaminants, CAC/VOL. XVII-Ed. 1, FAO, Rome (1984).

  13. G. V. Iyengar and B. Sansoni Sample preparation of biological materials for trace element analysis, in Elemental Analysis of Biological Materials, Technical Reports No. 197, International Atomic Energy Agency, Vienna (1980).

    Google Scholar 

  14. M. C. Freitas and E. Martinho, Neutron activation analysis of reference materials by the k0-standardization and relative methods, Anal. Chim. Acta 219, 317–322 (1989).

    Article  CAS  Google Scholar 

  15. M. C. Freitas and E. Martinho, Determination of trace elements in reference materials by the k0-standardization method (INAA), Talanta 36(4), 527–531 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. B. Smodiš, R. Jaćimović, S. Jovanović, and P. Stegnar, Determination of trace elements in standard reference materials by the k0-standardization method, in Nuclear Analytical Methods in the Life Sciences, R. Zeisler and V. P. Guinn, eds., Humana, Totowa, NJ, pp. 43–51 (1990).

    Google Scholar 

  17. S. B. Sarmani, I. Abugassa, A. Hamzah, and M. D. Yahya, Elemental analysis of herbal preparations for traditional medicines by neutron activation analysis with the k0-standardization method, Biol. Trace Element Res. 71–72, 365–376 (1999).

    Google Scholar 

  18. M. F. Araújo, A. Conceição, T. Barbosa, M. T. Lopes, and M. Humanes, Elemental composition of marine sponges from the Berlengas Natural Park-Western Portuguese Coast, X-Ray Spectrom. 32, 428–433 (2003).

    Article  CAS  Google Scholar 

  19. R. Jayasekera, M. C. Freitas, and M. F. Araújo, Bulk and trace element analysis of spices: the applicability of k0-standardization and energy dispersive X-ray fluorescence, J. Trace Elements Med. Biol. 17(4), 221–228 (2004).

    Article  CAS  Google Scholar 

  20. J. Op De Beeck, GELIAN Program, Institute for Nuclear Sciences, University of Ghent, Belgium (1978).

    Google Scholar 

  21. F. De Corte, The k0-standardization method—a move to the optimization of neutron activation analysis, Agregé thesis, University of Ghent, Belgium (1987).

    Google Scholar 

  22. M. C. Freitas, Instrumental neutron activation analysis of geological and biological reference materials using the k0-standardization method, in Nuclear Analytical Methods in the Life Sciences, R. Zeisler and V. P. Guinn, eds., Humana, Totowa, NJ, pp. 189–194 (1990).

    Google Scholar 

  23. R. Bargagli, Trace Elements in Terrestrial Plants, Springer-Verlag, New York (1998).

    Google Scholar 

  24. H. Sigel, A. Sigel, and H. G. Seiler, Overview and use of the handbook, in Handbook on Metals in Clinical and Analytical Chemistry, H. G. Seiler, A. Sigel, and H. Sigel, eds., Marcel Dekker, New York, pp. 1–12 (1994).

    Google Scholar 

  25. L. Thunus and R. Lejeune, Cabalt, in Handbook on Metals in Clinical and Analytical Chemistry, H. G. Seiler, A. Sigel, and H. Sigel, eds., Marcel Dekker, New York, pp. 333–338 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasekera, R., Freitas, M.C. Concentration levels of major and trace elements in rice from sri lanka as determined by the k 0 standardization method. Biol Trace Elem Res 103, 83–96 (2005). https://doi.org/10.1385/BTER:103:1:083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:1:083

Index Entries

Navigation