Skip to main content
Log in

Determination of trace concentration of aluminium in raw rice samples using instrumental neutron activation analysis and particle induced gamma-ray emission methods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Determination of aluminium concentration in food samples is important for the food safety and quality control purpose owing to its toxicity. This work demonstrates determination of aluminum concentrations in raw rice samples, obtained from agricultural field, by instrumental neutron activation analysis (INAA) using reactor neutrons and high resolution gamma-ray spectrometry. Particle induced gamma-ray emission (PIGE) method was also standardized for the determination of aluminium content in some samples. The aluminium contents were found to be in the range of 5–80 mg kg−1. INAA and PIGE methods were validated by analyzing five reference materials obtained from NIST and IAEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO Rice Information Rome: (2000). Food and Agriculture Organization of The United Nations, Vol. 3

  2. Semwal AD, Padmashree A, Khan MA, Sharma GK, Bawa AS (2006) Leaching of aluminium from utensils during cooking of food. J Sci Food Agric 86(14):2425–2430

    Article  CAS  Google Scholar 

  3. Hassan MF, Sadek MA, Abd-El-Razik FH (2008) Risk of aluminum toxicity and its relation to some biochemical changes in healthy, diabetic and hyperlepidemic rats. Egypt J Nat Toxins 5(1–2):100–120

    Google Scholar 

  4. Rajwanshi P, Singh V, Gupta MK, Dass S (1997) Leaching of aluminium from cookwares: a review. Environ Geochem Health 19(1):1–18

    Article  CAS  Google Scholar 

  5. Barikmo I, Ouattara F, Oshaug A (2007) Differences in micronutrients content found in cereals from various parts of Mali. J Food Comp 20:681–687

    Article  CAS  Google Scholar 

  6. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  7. Kochian LV, Hoekenga A, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  Google Scholar 

  8. Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Biol 46:237–260

    Article  CAS  Google Scholar 

  9. Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminum toxicity and resistance in higher plants. Braz Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  10. Arroyave C, Barceló J, Poschenrieder C, Tolrà R (2011) Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyper resistance to Al in Brachiaria decumbens. J Inorg Biochem 105:1477–1483

    Article  CAS  Google Scholar 

  11. Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant–soil interactions at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19

    Chapter  Google Scholar 

  12. Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  CAS  Google Scholar 

  13. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  CAS  Google Scholar 

  14. MurallAchary VM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cell of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  Google Scholar 

  15. Pereira LB, Mazzanti CM, Goncalves JF, Cargnelutti D, Tabaldi LA, Becker AG (2010) Aluminum-induced oxidative stress in cucumber. Plant Physiol Biochem 48:683–689

    Article  CAS  Google Scholar 

  16. Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696

    Article  CAS  Google Scholar 

  17. Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neuro? Brillary tangle-bearing neurons. Science 208:297–299

    Article  CAS  Google Scholar 

  18. Gregorio B, Glenn Senadhira, Dharmawansa Htut H, Graham DR (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21(4):382–386

    Article  Google Scholar 

  19. Flaten TP (2001) Aluminum as a risk factor in alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196

    Article  CAS  Google Scholar 

  20. Jean Pennington AT (1988) Aluminium content of foods and diets. Food Addit Contam 5(2):161–232

    Article  Google Scholar 

  21. Scientific opinion of the panel on food additives (2008) EFSA J 754:1

    Google Scholar 

  22. Nanda BB, Biswal RR, Acharya R, Rao JSB, Pujari PK (2014) Determination of aluminium contents in selected food samples by instrumental neutron activation analysis. J Radioanal Nucl Chem 302:1471–1474

    Article  CAS  Google Scholar 

  23. Simmons RW, Ponhsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium in rice grain downstream of zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  24. Das P, Raghuramulu N, Rao KC (2005) Determination of in vitro availability of iron from common foods. J Hum Ecol 18:13–20

    Google Scholar 

  25. Demirbas A, Demirbas A (2005) β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90(4):773–777

    Article  CAS  Google Scholar 

  26. Acar Z, Ayan I, Gulser C (2001) Some morphological and nutritional properties of legumes under natural conditions. Pak J Biol Sci 4:1312–1315

    Article  Google Scholar 

  27. Clark RB, Pier PA, Knudsen D, Maranville JW (1981) Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. J Plant Nutr 3:357–374

    Article  CAS  Google Scholar 

  28. Foy CD, Fleming AL (1982) Aluminum tolerance of two wheat cultivars related to nitrate reductase activities. J Plant Nutr 5:1313–1333

    Article  CAS  Google Scholar 

  29. Furlani PR, Clark RB (1981) Screening sorghum for aluminum tolerance in nutrient solutions. Agron J 73:587–594

    Article  CAS  Google Scholar 

  30. Muller M, Anke M, Illing-Gunther H (1998) Aluminium in foodstuffs. Food Chem 61:419–428

    Article  CAS  Google Scholar 

  31. Corbin DR, Burgess BF, Vega AJ, Farlee RD (1987) Comparison of analytical techniques for the determination of silicon and aluminum content in zeolites. Anal Chem 59(22):2722–2728

    Article  CAS  Google Scholar 

  32. Clarke N, Danielson LG, Sparen A (1996) Analytical methodology for the determination of aluminium fractions in natural fresh waters (V.2). Pure Appl Chem 68(8):1597–1638

    Article  CAS  Google Scholar 

  33. Park CJ, Hall Gem (1987) Analysis of geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrochemical vaporisation. Part 1. determination of molybdenum and tungsten. J Anal At Spectrum 2:473–480

    Article  CAS  Google Scholar 

  34. Landsberger S, Arendt AM (1989) Non-destructive determination of aluminum in biological reference samples using neutron activation analysis. J Radioanal Nucl Chem Lett 137:443–454

    Article  CAS  Google Scholar 

  35. Sharif AAM, Ghafourian H, Ahmadiniar A, Husain SW, Saber- Tehrani M, Ghods H (2004) Determination of aluminum levels in serum and red blood cells from long-term hxaemodialysis patients using instrumental neutron activation analysis. J Radioanal Nucl Chem 262:473–477

    Article  CAS  Google Scholar 

  36. Acharya R, Swain KK, Kumar A, Ajith N, Verma R, Reddy AVR (2010) Determination of k0 factor and validation of k0–INAA for short lived nuclides. J Radioanal Nucl Chem 286:507–511

    Article  CAS  Google Scholar 

  37. Acharya R, Nair AGC, Reddy AVR, Manohar SB (2002) Validation of a neutron activation analysis method using k0-standardization. Appl Radiat Isot 57:391–398

    Article  CAS  Google Scholar 

  38. Balaji T, Acharya R, Nair AGC, Reddy AVR, Rao KS, Naidu GRK, Manohar SB (2000) Multi-element analysis in cereals and pulses by k0 instrumental neutron activation analysis. Sci Tot Environ 253:75–81

    Article  CAS  Google Scholar 

  39. Balaji T, Acharya RN, Nair AGC, Reddy AVR, Rao KS, Naidu GRK, Manohar SB (2000) Determination of essential elements in ayurvedic medicinal leaves by k0 standardized instrumental neutron activation analysis. J Radioanal Nucl Chem 243:783–788

    Article  CAS  Google Scholar 

  40. Dasari KB, Acharya R, Das NL (2013) Application of INAA to ancient bricks for grouping study using trace elements. J Radioanal Nucl Chem 298:699–705

    Article  CAS  Google Scholar 

  41. Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Proton induced thick target c-yields of light nuclei at the energy region Ep = 1.0–4.1 MeV. Nucl Instrum Methods Phys Res B 152:12–18

    Article  CAS  Google Scholar 

  42. Dasari KB, Chhillar S, Acharya R, Ray DK, Behera A, Das NL, Pujari PK (2014) Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts. Nucl Instrum Methods Phys Res B 339:37–41

    Article  CAS  Google Scholar 

  43. Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples. Anal Chem 86:11167–11173

    Article  CAS  Google Scholar 

  44. Mukhopadhyay P K (2001) Proceedings of the symposium on Intelligent Nuclear Instrumentation (INIT-2001). Bhabha Atomic Research Centre, Mumbai: pp. 307–310

Download references

Acknowledgments

Authors thankfully acknowledge UGC-DAE-CSR and Dr. V. Siruguri, Director, Mumbai Centre of UGC-DAE CSR, Mumbai Centre for the project and financial assistance. Authors thank research reactor personnel of BARC and IGCAR as well as operation crew members of IBL, Institute of Physics (IOP) for their help. Authors thank Dr. A.K. Nayak, Principal Scientist, CRRI, Cuttack, India for his valuable guidance and providing samples for this study. Authors thank Dr. P. K Pujari, Head, RCD, BARC for his support and encouragement. Authors thank Dr. C. R.Venkat Subramani, RRF, IGCAR for his support for the experiment at KAMINI reactor. One of the authors (BBN) from Vikram Deb Autonomous College thanks the Principal Prof. (Mrs.) C. Sabitri for her support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Braja B. Nanda or R. Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, B.B., Brahmaji Rao, J.S., Kumar, R. et al. Determination of trace concentration of aluminium in raw rice samples using instrumental neutron activation analysis and particle induced gamma-ray emission methods. J Radioanal Nucl Chem 310, 1241–1245 (2016). https://doi.org/10.1007/s10967-016-5032-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5032-x

Keywords

Navigation