Skip to main content
Log in

Conversion of sodium lactate to lactic acid with water-splitting electrodialysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The conversion of sodium lactate to lactic acid with water-splitting electrodialysis was investigated. One way of reducing the power consumption is to add a conductive layer to the acid compartment. Doing this reduced the power consumption by almost 50% in a two-compartment cell, whereas the electric current efficiency was not affected at all. Three different solutions were treated in the electrodialysis unit: a model solution with 70 g/L of sodium lactate and a fermentation broth that had been prefiltered two different ways. The fermentation broth was either filtered in an open ultrafiltration membrane (cut-off of 100,000 Dalton) in order to remove the microorganisms or first filtered in the open ultrafiltration membrane and then in an ultrafiltration membrane with a cut-off of 2000 Dalton to remove most of the proteins. The concentration of sodium lactate in the fermentation broth was 70 g/L, as well. Organic molecules present in the broth (peptides and similar organic material) fouled the membranes and, therefore, increased power consumption. Power consumption increased more when permeate from the more open ultrafiltration membrane was treated in the electrodialysis unit than when permeate from the membrane with the lower cut-off was treated, since there was a higher amount of foulants in the former permeate. However, the electrodialysis membranes could be cleaned efficiently with a 0.1 M sodium hydroxide solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeley, R. S. (1992), Chem. Business, February, 28–30.

  2. Lipinsky, E. S. (1981), Science 212, 1465–1471.

    Article  CAS  Google Scholar 

  3. Röper, H. and Koch, H. (1990), Starch/Stärke 42(4), 123–130.

    Article  Google Scholar 

  4. Kharas, G. B., Sanchez-Riera F., and Severson, D. K. (1994), in Plastics from Microbes, Microbial Syntheses of Polymers and Polymer Precursors, Mobely, D. P., ed., Carl Hanser Verlag, Munich.

    Google Scholar 

  5. Yabannavar, V. M. and Wang, D. I. C. (1991), Biotechnol. Bioeng. 37, 716–722.

    Article  CAS  Google Scholar 

  6. Jianping, L., Bo, C., Jianping, W., and Peilin, C. (1997), Chin. J. Chem. Eng. 5(1), 49–55.

    Google Scholar 

  7. Datta, R., Tsai, S.-P., Bonsignore, P., Moon, S.-H., and Frank, J. R. (1995), FEMS Microbiol. Rev. 16, 221–231.

    Article  CAS  Google Scholar 

  8. Bar, R. and Gainer, J. L. (1987), Biotechnol. Prog. 3(2), 109–114.

    Article  CAS  Google Scholar 

  9. Katzbauer, B., Moser, A., and Narodoslawsky, M. (1992), DECHEMA Biotechnol. Conf. 5, 711–713.

    CAS  Google Scholar 

  10. Seto, T., Ehara, L., Komori, R., Yamaguchi, A., and Miwa, T., (1978), Desalination 25(1), 1–7.

    Article  CAS  Google Scholar 

  11. Thampy, S. K., Narayanan, P. K., Harkare, W. P., and Govindan, K. P. (1988), Desalination 69(3), 261–273.

    Article  CAS  Google Scholar 

  12. Strauss, S. D. (1992), Electric Power Int. June, 21–24.

  13. Hebbs, A. (1986), Int. Power Generat. 9(3), 23–26.

    Google Scholar 

  14. Rapp, H.-J. and Pfromm, P. H. (1998), J. Memb. Sci. 146, 249–261.

    Article  CAS  Google Scholar 

  15. Urano, K., Ase, T., and Naito, Y. (1984), Desalination 51(2), 213–226.

    Article  CAS  Google Scholar 

  16. López Leiva, M. H. (1988), Lebensm.-Wiss. U. Technol. 21, 177–182.

    Google Scholar 

  17. Glassner, D. A., Elankovan, P., Beacom, D. R., and Berglund, K. A. (1995), Appl. Biochem. Biotechnol. 51/52, 73–82.

    Article  CAS  Google Scholar 

  18. Novalic, S., Okwor, J., and Kulbe, K. D. (1996), Desalination 105, 277–282.

    Article  CAS  Google Scholar 

  19. Yao, P.-X. and Kiyoshi, T. (1990), J. Gen. Appl. Microbiol. 36, 111–125.

    CAS  Google Scholar 

  20. Yen, Y.-H. and Cheryan, M. (1991), Trans. IchemE 69(C), 200–205.

    Google Scholar 

  21. Yen, Y.-H. and Cheryan, M. (1993), J. Food Eng. 20, 267–282.

    Article  Google Scholar 

  22. Boniardi, N., Rota, R., Nano, B., and Mazza, B. (1997), J. Appl. Electrochem. 27, 125–133.

    Article  CAS  Google Scholar 

  23. Boniardi, N., Rota, R., Nano, B., and Mazza, B. (1997), J. Appl. Electrochem. 27, 135–145.

    Article  CAS  Google Scholar 

  24. Gyo Lee, E., Moon, S.-H., Keun Chang, Y., Yoo, T.-K., and Nam Chang, H. (1998), J. Memb. Sci. 145(1), 53–66.

    Article  Google Scholar 

  25. Xuemei, L., Jianping, L., Mo’e, L., and Peilin, C. (1999), Bioprocess Eng. 20, 231–237.

    CAS  Google Scholar 

  26. Börgardts, P., Kriksche, W., Trosch, W., and Brunner, H. (1998), Bioprocess Eng. 19(5), 321–329.

    Article  Google Scholar 

  27. Hofvendahl, K. and Hahn-Hägerdal, B. (1997), Enzyme Microb. Technol. 20, 301–307.

    Article  CAS  Google Scholar 

  28. Hovfendahl, K., Åkerberg, C., Zacchi G., and Hahn-Hägerdal, B. (1999), Appl. Microbiol. Biotechnol. 52, 781–791.

    Article  Google Scholar 

  29. Toräng, A., Jönsson, A.-S., and Zacchi, G. (1999), Appl. Biochem. Biotechnol. 76, 143–157.

    Article  Google Scholar 

  30. Åkerberg, C., Hofvendahl, K., Zacchi, G., and Hahn-Hägerdahl, B. (1998), Appl. Microbiol. Biotechnol. 49, 682–690.

    Article  Google Scholar 

  31. Åkerberg, C., Zacchi, G., Torto, N., and Gorton, L. (2000), J. Chem. Technol. Biotechnol. 75(4), 306–314.

    Article  Google Scholar 

  32. Korngold, E. (1975), Desalination 16(2), 225–233.

    Article  CAS  Google Scholar 

  33. Narebska, A. and Kurantowicz, M. (1996), Sep. Sci. Technol. 33(7), 959–973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Zacchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, A., Garde, A., Jönsson, AS. et al. Conversion of sodium lactate to lactic acid with water-splitting electrodialysis. Appl Biochem Biotechnol 94, 197–211 (2001). https://doi.org/10.1385/ABAB:94:3:197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:94:3:197

Index Entries

Navigation