Skip to main content
Log in

A hybrid neuroal network algorithm for on-line state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One serious difficulty in modeling a fermentative process is the forecasting of the duration of the lag phase. The usual approach to model biochemical reactors relies on first-principles, unstructured mathematical models. These models are not able to take into account changes in the process response caused by different incubation times or by repeated fed batches. Toover come this problem, we have proposed a hybrid neural network algorithm. Feedforward neural networks were used to estimate rates of cell growth, substrate consumption, and product formation from on-line measurements during cephalosporin C production. These rates were included in the mass balance equations to estimate key process variables: concentrations of cells, substrate, and product. Data from fed-batch fermentation runs in a stirred aerated bioreactor employing the microorganism Cephalosporium acremonium ATCC 48272 were used. On-line measurements strongly related to the mass and activity of the cells used. They include carbon dioxide and oxygen concentrations in the exhausted gas. Good results were obtained using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savidge, T. A. (1984), in Biotechnology of Industrial, Antibiotics, vol. 22, Vandamme, E. J. Marcel Dekker, NY, pp. 171–224.

    Google Scholar 

  2. Matsumura, M., Imanaka, T., Yoshida T., and Taguchi, H. (1981). J. Fernet. Technol. 59(2), 115–123.

    CAS  Google Scholar 

  3. Chu, W. B. Z. and Constantinides, A. (1988), Biotechnol. Bioeng., 32, 277–288.

    Article  CAS  Google Scholar 

  4. Basak, S., Velayudhan, A., and Ladisch, M. R. (1995), Biotechnol. Prog. 11, 626–631.

    Article  CAS  Google Scholar 

  5. Araujo, M. L., G. C. Oliveira R. P., Giordano, R. C., and Hokka, C. O. (1996), Chem. Eng. Sci. 51(11), 2835–2840.

    Article  CAS  Google Scholar 

  6. Thibault, J., Breusegem, V. V., and Chéruy, A. (1990), Biotechnol. Bioeng, 36, 1041–1048.

    Article  CAS  Google Scholar 

  7. Di Massimo, C., Montague, G. A., Willis, M. J., Tham, M. T., and Morris, A. J. (1992) Comput. Chem. Eng. 16(4), 283–291.

    Article  Google Scholar 

  8. Karim, M. N. and Rivera, S. L. (1992) Comput. Chem. Eng. Suppl. S369–S377.

  9. Syu, M.-J. and Tsao, G. T. (1993), Biotechnol. Bioeng. 42, 376–380.

    Article  CAS  Google Scholar 

  10. Cruz, A. J. G., Araujo, M. L. G. C., Giordano, R. C., and Hokka, C. O. (1998) Appl. Biochem. Biotechnol. 70–72, 579–592.

    Article  Google Scholar 

  11. Warnes, M. R., Glassey, J., Montague, G. A., and Kara, B. (1998) Neurocomputing 20, 67–82.

    Article  Google Scholar 

  12. Psichogios, D. B. and Ungar, L. H. (1992), AIChE J. 38(10), 1499–1506.

    Article  CAS  Google Scholar 

  13. van Can, H. J. L., te Breake, H. A. B., Hellinga, C., Luyben, K. C. A. M., and Heijnen, J. J. (1997), Biotechnol. Bioeng. 54(6) 549–566.

    Article  Google Scholar 

  14. Rumelhart, D. E. and McClelland, J. L. (1986), in Parallel Distributed Processing, vol. 1 Massachusetts Institute of Technology, Cambridge, pp. 318–362.

    Google Scholar 

  15. Ruck, D. W., Rogers, S. K., Kabrisky, M., Maybeck, P. S., and Oxley, M. E., (1992) IEEE Trans. Pattern Anal. Machine Intell, 14(6) 686–691.

    Article  Google Scholar 

  16. Thompson, M. L., and Kramer, M. A. (1994), AIChE J., 40(8), 1328–1340.

    Article  CAS  Google Scholar 

  17. van, Can, H. J. L., te, Breake, H. A. B., Bijman, A., Hellinga, C., Luyben, K. C. A. M., and Heijnen, J. J. (1999) Biotechnol. Bioeng., 62(6), 666–680.

    Article  Google Scholar 

  18. Shen, Y.-Q., Wolfe, S., and Demain, A. L. (1986), Bio/Technology 4, 61–63.

    Article  CAS  Google Scholar 

  19. Demain, A. L., Newkirk, J. F., and Hendlin, D. (1963), J. Bacteriol. 85, 339–344.

    CAS  Google Scholar 

  20. Cruz, A. J. G., Silva, A. S., Araujo, M. L. G. C., Giordano, R. C., and Hokka, C. O. (1999), Chem. Eng. Sci. 54, 3137–3142.

    Article  CAS  Google Scholar 

  21. Trinder, P. (1969), Ann. Clin. Biochem. 6, 24.

    CAS  Google Scholar 

  22. Silva, A. S., Cruz, A. J. G., Araujo, M. L. G. C., and Hokka, C. O. (1998), Braz. J. Chem. Eng. 15(4), 320–325.

    Article  CAS  Google Scholar 

  23. Hernández, E. and Arkun, Y. (1992), Comput. Chem. Eng. 16(4), 227–240.

    Article  Google Scholar 

  24. Bhat, N. and McAvoy, T. J. (1990) Comput. Chem. Eng. 14(4/5), 573–583.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.G., Cruz, A.J.G., Hokka, C.O. et al. A hybrid neuroal network algorithm for on-line state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors. Appl Biochem Biotechnol 91, 341–352 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:341

Index Entries

Navigation