Skip to main content
Log in

State estimation and nonlinear tracking control simulation approach. Application to a bioethanol production system

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Tracking control of specific variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is reflected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Azhar SHM, R Abdulla SA Jambo H Marbawi JA Gansau AAM Faik 2017 Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10 52 61

    Google Scholar 

  2. de Azevedo A, Fornasier F, da Silva Szarblewski M, de Souza Schneider RDC, Hoeltz M, de Souza D (2017) Life cycle assessment of bioethanol production from cattle manure. J Clean Prod 162:1021–1030

    Article  Google Scholar 

  3. Ozdingis AGB, Kocar G (2018) Current and future aspects of bioethanol production and utilization in Turkey. Renew Sustain Energy Rev 81:2196–2203

    Article  Google Scholar 

  4. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584

    Article  CAS  Google Scholar 

  5. Herrero ML, Vallejo MD, Sardella MF, Deiana AC (2015) Acid pretreatment of two phase olive mill waste to improve bioavailable sugars: conditions optimization using response surface methodology. Waste Biomass Valor 6:37–44

    Article  CAS  Google Scholar 

  6. Aimaretti NR, Ybalo CV, Rojas ML, Plou FJ, Yori JC (2012) Production of bioethanol from carrot discards. Bioresour Technol 123:727–732

    Article  CAS  Google Scholar 

  7. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK (2015) Continuous ethanol production from sugarcane bagasse hydrolysate at high temperature with cell recycle and in-situ recovery of ethanol. Chem Eng Sci 138:524–530

    Article  CAS  Google Scholar 

  8. Tgarguifa A, Abderafi S, Bounahmidi T (2017) Modeling and optimization of distillation to produce bioethanol. Energy Proc 139:43–48

    Article  CAS  Google Scholar 

  9. Scaglia GJ, Aballay PM, Mengual CA, Vallejo MD, Ortiz OA (2009) Improved phenomenological model for an isothermal winemaking fermentation. Food Control 20:887–895

    Article  CAS  Google Scholar 

  10. Ochoa S (2016) A new approach for finding smooth optimal feeding profiles in fed-batch fermentations. Biochem Eng J 105:177–188

    Article  CAS  Google Scholar 

  11. Liu C, Gong Z, Shen B, Feng E (2013) Modelling and optimal control for a fed-batch fermentation process. Appl Mathl Modelling 37:695–706

    Article  Google Scholar 

  12. Jin H, Chen X, Yang J, Wu L, Wang L (2014) Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA Trans 53:1822–1837

    Article  Google Scholar 

  13. Mandenius C-F (2004) Recent developments in the monitoring, modeling and control of biological production systems. Bioprocess Biosyst Eng 26:347–351

    Article  CAS  Google Scholar 

  14. Hussain M, Ramachandran K (2002) Comparative evaluation of various control schemes for fed-batch fermentation. Bioprocess Biosyst Eng 24:309–318

    Article  Google Scholar 

  15. Huang D, Lv J (2020) Run-to-run control of batch production process in manufacturing systems based on online measurement. Comput Ind Eng 141:106298

    Article  Google Scholar 

  16. Liu K, Chen Y, Zhang T, Tian S, Zhang X (2018) A survey of run-to-run control for batch processes. ISA Trans 83:107–125

    Article  Google Scholar 

  17. Baeza JA (2017) 18—principles of bioprocess control A2—Larroche, Christian In: Sanromán MÁ, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 527–561

    Chapter  Google Scholar 

  18. Hunag W-H, Shieh GS, Wang F-S (2012) Optimization of fed-batch fermentation using mixture of sugars to produce ethanol. J Taiwan Inst Chem Eng 43:1–8

    Article  CAS  Google Scholar 

  19. Fernández MC, Nadia Pantano M, Rossomando FG, Alberto Ortiz O, Scaglia GJ (2019) State estimation and trajectory tracking control for a nonlinear and multivariable bioethanol production system. Brazil J Chem Eng 36:421–437

    Article  Google Scholar 

  20. Griffiths DV, Smith IM (2006) Numerical methods for engineers. CRC Press

    Book  Google Scholar 

  21. Strang G (2005) Linear algebra and its applications. Thomson Brooks/Cole, Belmont, CA, USA

    Google Scholar 

  22. Tempo R, Ishii H (2007) Monte Carlo and Las Vegas randomized algorithms for systems and control: an introduction. Eur J Control 13:189–203

    Article  Google Scholar 

  23. Puchol MCF, Pantano MN, Godoy S, Serrano E, Scaglia G (2018) Optimización de Parámetros Utilizando los Métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a un Controlador de Seguimiento de Trayectoria en Sistemas no Lineales," Revista Iberoamericana de Automática e Informática industrial, 2018

  24. Scaglia G, Rosales A, Quintero L, Mut V, Agarwal R (2010) A linear-interpolation-based controller design for trajectory tracking of mobile robots. Control Eng Pract 18:318–329

    Article  Google Scholar 

  25. Mentana A, Palermo C, Nardiello D, Quinto M, Centonze D (2012) Simultaneous and accurate real-time monitoring of glucose and ethanol in alcoholic drinks, must, and biomass by a dual-amperometric biosensor. J Agric Food Chem 61:61–68

    Article  Google Scholar 

  26. Salau NP, Trierweiler JO, Secchi AR (2012) State estimators for better bioprocesses operation. In: Computer aided chemical engineering, vol. 30. Elsevier, pp 1267–1271

  27. Assis A, Maciel Filho R (2001) Control applications of artificial neural networks in bioprocessing and chemical engineering: a review. In: First Mercosul Congress On Chemical Engineering-Empromer, 2001, pp 361–366

  28. Ali JM, Hoang NH, Hussain MA, Dochain D (2015) Review and classification of recent observers applied in chemical process systems. Comput Chem Eng 76:27–41

    Article  Google Scholar 

  29. Bernardo JM, Smith AF (2009) Bayesian theory, vol. 405. Wiley

    Google Scholar 

  30. Bergman S, Schiffer M (2005) Kernel functions and elliptic differential equations in mathematical physics. Courier Corporation

    Google Scholar 

  31. Sciascio di F, Amicarelli AN (2008) Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression. Comput Chem Eng 32:3264–3273

    Article  Google Scholar 

  32. Abrahamsen P (1997) A review of Gaussian random fields and correlation functions. In: Norsk Regnesentral/Norwegian Computing Center Oslo, 1997

  33. Chapelle O, Vapnik V (2000) Model selection for support vector machines. In: Advances in neural information processing systems, pp. 230–236

  34. Cristianini N, Campbell C, Shawe-Taylor J (1999) Dynamically adapting kernels in support vector machines. In: Advances in neural information processing systems, pp 204–210

  35. Schölkopf B, Bartlett PL, Smola AJ, Williamson RC (1999) Shrinking the tube: a new support vector regression algorithm. In: Advances in neural information processing systems, pp 330–336

  36. Wahba G (1999) Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Adv Kernel Methods-Support Vect Learn 6:69–87

    Google Scholar 

  37. Gibbs MN (1998) Bayesian Gaussian processes for regression and classification. Citeseer

    Google Scholar 

  38. MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448–472

    Article  Google Scholar 

  39. Neal RM (1997) Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. arXiv preprint physics/9701026, 1997

  40. Rasmussen CE (1997) Evaluation of Gaussian processes and other methods for non-linear regression. University of Toronto, Toronto

    Google Scholar 

  41. Akaike H (1998) Likelihood and the Bayes procedure. In: Selected papers of Hirotugu Akaike. Springer, pp 309–332

  42. Rómoli S, Amicarelli AN, Ortiz OA, Scaglia GJE, Sciascio di F (2016) Nonlinear control of the dissolved oxygen concentration integrated with a biomass estimator for production of Bacillus thuringiensis δ-endotoxins. Comput Chem Eng 93:13–24

    Article  Google Scholar 

  43. Williams CK, Rasmussen CE (1996) Gaussian processes for regression. In: Advances in neural information processing systems, pp 514–520

  44. Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11:3011–3015

    Google Scholar 

  45. Wechselberger P, Seifert A, Herwig C (2010) PAT method to gather bioprocess parameters in real-time using simple input variables and first principle relationships. Chem Eng Sci 65:5734–5746

    Article  CAS  Google Scholar 

  46. George J (2014) On adaptive loop transfer recovery using Kalman filter-based disturbance accommodating control. Control Theory Appl IET 8:267–276

    Article  Google Scholar 

Download references

Acknowledgments

To the National Council of Scientific and Technological Research (CONICET) and the Chemical Engineering Institute (IIQ) from the National University of San Juan for their support in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cecilia Fernández.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M.C., Pantano, M.N., Rodriguez, L. et al. State estimation and nonlinear tracking control simulation approach. Application to a bioethanol production system. Bioprocess Biosyst Eng 44, 1755–1768 (2021). https://doi.org/10.1007/s00449-021-02558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02558-y

Keywords

Navigation